A Packing Problem

A shipping company needs to box up six $1ft. \times 2ft. \times 2ft$. packages into one large box. To save money on materials, the shipping company would like to find a box that would have the least amount of surface area.

1. What are some possible size boxes that could be used to pack all six packages together?

•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
																		•	
			•																
•		-		•		-		-		-		-		•		-		-	
	•		•		•		•		•		•	-	•		•	-	•	-	
•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
٠		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
•		•		•		•		•		•		•		•		•		•	
	•		•		•		•		•		•		•		•		•		
•		•		•				•		•		•		•				•	
			•		•				•		•		•				•		
																		•	
-		-		-				-						-					

- 2. If the postal company wants to use a box with the least surface area, what should the dimensions be?
- 3. What if you add three more smaller $1 \times 1 \times 1$ packages? Can you find the dimensions of the box with the least surface area?