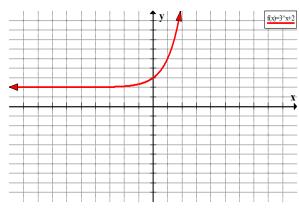

Pre-Calculus Unit 4 Practice Test


Learning Target 4A—I can graph and describe transformations for exponential functions.

1. Graph the following functions and describe the transformation(s) for $f(x) = 3^x$.

a.
$$f(x) = \frac{1}{3}(3^x)$$

- Write the equation for $f(x) = 6^x$ that undergoes the following transformations:
 - Shifted left 3 units,
 - 4 units down,
 - and reflected across the x-axis.

$$g(x) = -6^{x+3} - 4$$

- 3. Write the equation for $f(x) = 3^x$ that undergoes the following transformations:
 - Shifted right 2 units,
 - 3 units up,
 - and reflected across the x-axis.

$$g(x) = -3^{x-2} + 3$$

If all of the graphs below have equations with the form $f(x) = ab^x$

4. Which graph has the smallest *a* value?

В

5. Which graph has the largest *a* value?

 \mathcal{C}

6. Which graph has the smallest *b* value?

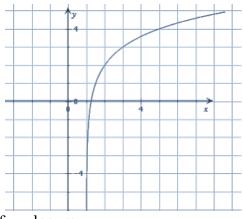
 \boldsymbol{A}

7. Which graph has the largest *b* value?

Learning Target 4B—I can graph and describe transformations for logarithmic functions.

8. Describe the transformations that change $f(x) = \log_3 x$ to $g(x) = \log_3 (x - 4) + 7$.

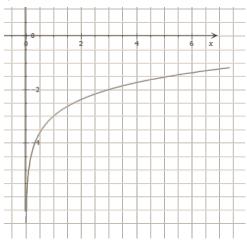
9. Describe the transformations that change $f(x) = \log_2 x$ to $g(x) = -2\log_2(x+2) - 3$.


Vertical flip and stretch by a factor of 2, left 2, down 3

10. Find the domain and vertical asymptote of $f(x) = \log(3x + 1)$.

Asymptote:
$$x = -\frac{1}{3}$$

because $3x + 1 = 0$
Domain: $\left(-\frac{1}{3}, \infty\right)$


11. Graph $\log_2(x-1) + 2$. Describe the transformation(s) from $\log_2 x$.

Right 1, up 2, asymptote at x = 1

12. Graph $f(x) = \log_3(x) - 3$. Describe the transformation(s) from $\log_3 x$.

 $Down\ 3, vertical\ asyptote\ at\ x=0$

Learning Target 4C—I can solve problems involving exponential functions.

13. Given the function $f(x) = 3(0.5)^x$, does f(x) represent exponential growth or decay? Explain how you know

Exponential decay because b < 1

14. Given the function $f(x) = -2(1.2)^x$, does f(x) represent exponential growth or decay? Explain how you know.

Exponential growth because b > 1

15. Write the exponential function that passes through the points (0, 5) and (4, 405). Show your algebraic steps to find the function.

$$5 = ab^{0} \rightarrow a = 5$$

$$405 = 5 \cdot b^{4}$$

$$81 = b^{4}$$

$$b = \sqrt[4]{81} = 3$$

$$y = 5 \cdot 3^{x}$$

16. Write the exponential function that passes through the points (2, 2) and (4, 8). Show your algebraic steps to find the function

$$2 = ab^{2} \rightarrow a = \frac{2}{b^{2}}$$

$$8 = ab^{4}$$

$$8 = \left(\frac{2}{b^{2}}\right)b^{4}$$

$$8 = 2b^{2}$$

$$b = +2$$

however the base of an exponentila equation cannot be negative, so b=2

$$8 = a(2)^4 \rightarrow a = \frac{1}{2}$$
$$y = \frac{1}{2} \cdot 2^x$$

17. Solve $216^{x-5} = 36^{x+2}$ for x.

$$216^{x-5} = 36^{x+2}$$

$$(6^3)^{x-5} = (6^2)^{x+2}$$

$$(6)^{3(x-5)} = (6)^{2(x+2)}$$

$$3(x-5) = 2(x+2)$$

$$3x-15 = 2x+4$$

$$x = 19$$

18. Solve
$$8 + 3^{2x+1} = 35$$

$$8 + 3^{2x+1} = 35$$

$$3^{2x+1} = 27$$

$$2x + 1 = \log_3 27$$

$$2x + 1 = 3$$

$$2x = 2$$

$$x = 1$$

19. Solve
$$5^x = \frac{1}{625}$$

$$5^{x} = \frac{1}{625}$$

$$x = \log_{5}\left(\frac{1}{625}\right)$$

$$x = \log_{5}(5^{-4})$$

$$x = -4$$

20. Determine whether the following table could represent an exponential function. Explain your reasoning.

х	0	1	2	3
y	1	2	4	8

Yes, this is an exponential function because the rato of each consecutive y – value is 2. The function is $y = 2^x$.

Learning Target 4D—I can solve problems involving logarithmic functions.

Solve the following for x. Solve the following for x.

21.
$$\log_3 \sqrt{x-2} = 2$$

$$3^2 = \sqrt{x - 2}$$

$$9 = \sqrt{x - 2}$$

$$81 = x - 2$$

$$x = 83$$

23.
$$\log(x + 4) - \log(x) = 2 \log 3$$

$$\log \frac{x+4}{x} = \log 3^2$$

$$\frac{x+4}{x} = 9$$

$$x+4=9x$$

$$4 = 8x \text{ so } x = \frac{1}{2}$$

22.
$$5 + \ln(0.02x) = -5$$

$$\ln(0.02x) = -10$$

$$e^{-10} = 0.02x$$

$$x \approx 0.0023$$

24.
$$\log_2(x+3) + \log_2(x+1) = 3$$

$$\log_2((x+3)(x+1)) = 3$$

x² + 4x + 3 = 2³

$$x^2 + 4x + 3 = 2^3$$
$$x^2 + 4x + 3 = 8$$

$$x^2 + 4x - 5 = 0$$

$$(x+5)(x-1)=0$$

Two possible solutions: x = -5, 1However, we must throw out -5 because of domain restrictions.

Solution:
$$x = 1$$

$$\frac{\log 12}{\log 4} \approx 1.792$$

26. Evaluate
$$\log_{\frac{1}{3}} 26$$
.

$$\frac{\log 26}{\log \frac{1}{3}} \approx -2.966$$

a.
$$2\log_3 x + 4\log_3 y - 3\log_3 z$$

 $\log_3 x^2 + \log_3 y^4 - \log_3 z^3$
 $\log_3 \left(\frac{x^2y^4}{z^3}\right)$

b.
$$4\log_x w + 6\log_x y$$

$$\log_x w^4 + \log_x y^6$$
$$\log_x (w^4 y^6)$$

28. Write the expression as the sum or difference of logarithms with no exponents

a.
$$\log_2(\frac{x^2}{a^2b^3})$$
 b. $\log_2((x-2)^5(4x)^3)$ b. $\log_2(x^2-\log_2 a^2b^3)$ 5 $\log_2(x-2)+3\log_2(4x)$ 2 $\log_2 x^2-(\log_2 a^2+\log_2 b^3)$ 2 $\log_2 x-2\log_2 a-3\log_2 b$

29. Calculate the number of years necessary for \$250 to grow to \$750 at 4.3% compounded continuously. Use the compound interest formula: $A=Pe^{rt}$, where A= final amount, P= starting amount, r= interest rate, and t= time in years. Show your work and round your answer to the nearest tenth.

$$750 = 250e^{.043t}$$

$$.043t = \ln 3$$

$$t = \frac{\ln 3}{.043} \approx 25.5 \text{ years}$$