3A: Rational Functions and Asymptotes

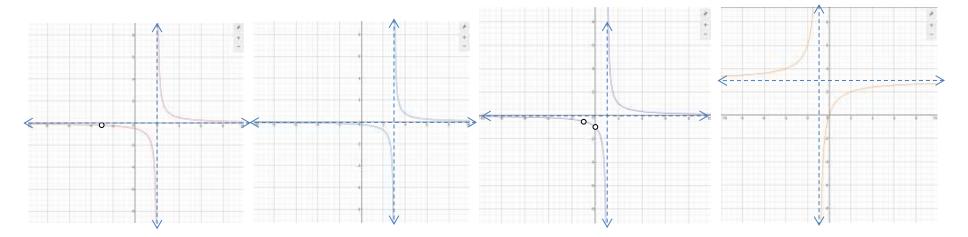
Assignment

Find the key asymptotes and intercepts for each function, then graph them on the last page.

Function	Factored Form	Domain Restrictions (from Denom.) and zeros (from Numerator)	Vertical Asymptotes (a) and Removable Discontinuities	Divide by greatest power of <i>x</i> in denominator	Limits as $x \to \pm \infty$	Horizontal Asymptotes from $\lim_{x\to\infty} f(x)$
$a(x) = \frac{x+3}{x^2+x-6}$	$y = \frac{x+3}{(x+3)(x-2)}$ $y = \frac{1}{x-2}$	Domain Restrictions: $x \neq -3$ $x \neq 2$ Zeros: None	Vert. Asym.: $x = 2$ Hole: $x = -3$	$y = \frac{\frac{1}{x}}{\frac{x}{x} - \frac{2}{x}}$ $y = \frac{\frac{1}{x}}{1 - \frac{2}{x}}$	$As x \to -\infty, y \to 0 As x \to \infty y \to 0$	$\lim_{x \to \pm \infty} f(x) = 0$ so Horizontal asymptote is $y = 0$

Function	Factored Form	Domain Restrictions (from Denom.) and zeros (from Numerator)	Vertical Asymptotes (a) and Removable Discontinuities	Divide by greatest power of x in denominator	Limits as $x \to \pm \infty$	Horizontal Asymptotes from $\lim_{x\to\infty} f(x)$
$b(x) = \frac{3}{4x - 12}$	$y = \frac{3}{4(x-3)}$	Dom. Restrictions: $x \neq 3$ Zeros: None	Vert. Asym: $x = 3$ Holes: none	$y = \frac{\frac{3}{x}}{\frac{4x}{x} - \frac{12}{x}}$ $y = \frac{\frac{3}{x}}{4 - \frac{12}{x}}$	$As x \to -\infty, y \to 0 As x \to \infty y \to 0$	$\lim_{x \to \pm \infty} f(x) = 0$ so Horizontal asymptote is $y = 0$
$c(x) = \frac{x^2 + x}{x^3 - x}$	$y = \frac{x(x+1)}{x(x+1)(x-1)}$ $y = \frac{1}{x-1}$	Dom. Restrictions: $x \neq 0, 1, -1$ Zeros: None	Vert. Asym: x = 1 Holes: x = 0, x = -1	$y = \frac{\frac{1}{x}}{\frac{x}{x} - \frac{1}{x}}$ $y = \frac{\frac{1}{x}}{1 - \frac{1}{x}}$	$As x \to -\infty, y \to 0 As x \to \infty y \to 0$	$\lim_{x \to \pm \infty} f(x) = 0$ so Horizontal asymptote is $y = 0$
$d(x) = \frac{3x}{x+1}$	$y = \frac{3x}{x+1}$	Dom. Restrictions: $x \neq -1$ Zeros: $x = 0$	Vert. Asym: $x = 1$ Holes: None	$y = \frac{\frac{3x}{x}}{\frac{x}{x} + \frac{1}{x}}$ $y = \frac{3x}{1 + \frac{1}{x}}$	$As x \to -\infty, y \to 3 As x \to \infty y \to 3$	$\lim_{x \to \pm \infty} f(x) = 3$ so Horizontal asymptote is $y = 3$

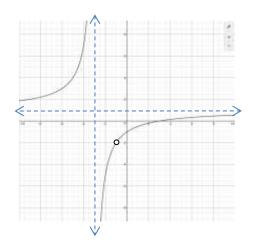
$e(x) = \frac{x^2 - 2x - 3}{x^2 + 4x + 3}$	$y = \frac{(x-2)(x+1)}{(x+1)(x+3)}$ $y = \frac{(x-2)}{(x+3)}$	Dom. Restrictions: $x \neq -1, 3$ Zeros: $x = 2$	Vert. Asym: x = 3 Holes: x = -1	$y = \frac{\left(\frac{x}{x} - \frac{2}{x}\right)}{\left(\frac{x}{x} + \frac{3}{x}\right)}$ $y = \frac{1 - \frac{2}{x}}{1 + \frac{3}{x}}$	As $x \to -\infty$, $y \to 1$ As $x \to \infty$ $y \to 1$	$\lim_{x \to \pm \infty} f(x) = 1$ so Horizontal asymptote is $y = 1$
$f(x) = \frac{2x^2 + x - 6}{x^2 + x - 2}$	$y = \frac{(x+2)(2x-3)}{(x+2)(x-1)}$ $y = \frac{(2x-3)}{(x-1)}$	$x \neq -2$ $x \neq 1$ $(by$ numerator: $zero \ at$ $x = \frac{3}{2}$	Vert. Asym.: $x = 1$ Hole: $x = -2$	$y = \frac{\frac{2x}{x} - \frac{3}{x}}{\frac{x}{x} - \frac{1}{x}}$ $y = \frac{2 - \frac{3}{x}}{1 - \frac{1}{x}}$	As $x \to -\infty$, $y \to 2$ As $x \to \infty$ $y \to 2$	$\lim_{x \to \pm \infty} f(x) = 2$ so Horizontal asymptote is $y = 2$
$g(x) = \frac{x^2 - 4}{x^2 + 1}$	$\frac{(x+2)(x-2)}{x^2+1}$	No Domain Restrictions	None because there are no domain restrictions	$y = \frac{\frac{x^2}{x^2} - \frac{4}{x^2}}{\frac{x^2}{x^2} + \frac{1}{x^2}}$ $y = \frac{1 - \frac{4}{x^2}}{1 + \frac{1}{x^2}}$	$As x \to -\infty, y \to 1 As x \to \infty y \to 1$	From Limits: y = 1 (by numerator: zero at $x = \pm 2$; and y- intercept at (0,-4))

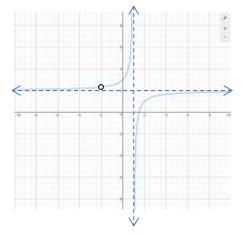

Graphs

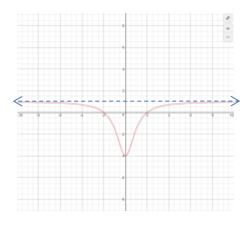
$$a(x) = \frac{x+3}{x^2 + x - 6}$$

$$b(x) = \frac{3}{4x - 12}$$

$$c(x) = \frac{x^2 + x}{x^3 - x}$$


$$d(x) = \frac{3x}{x+1}$$




$$e(x) = \frac{x^2 - 2x - 3}{x^2 + 4x + 3}$$

$$f(x) = \frac{2 x^2 + x - 6}{x^2 + x - 2}$$

$$g(x) = \frac{x^2 - 4}{x^2 + 1}$$

