Assignment 1D: Rates of Change

Answer the following problems with as much detail, explanation, and work that is appropriate.

1. Use the formula to find the average rate of change for $f(x)=x^{3}$ on the intervals
a. $[0,1]$

$$
\frac{\Delta y}{\Delta x}=\frac{(1)^{3}-(0)^{3}}{1-0}=1
$$

b. $[-1,1]$

$$
\frac{\Delta y}{\Delta x}=\frac{(-1)^{3}-(1)^{3}}{-1-1}=1
$$

c. $[-1,2]$

$$
\frac{\Delta y}{\Delta x}=\frac{(2)^{3}-(-1)^{3}}{(2)-(-1)}=3
$$

2. Show these rates of change for $f(x)=x^{3}$ graphically for each of the intervals above by drawing the secant lines on the graph to the right. Explain how these lines relate to the rates of change in \#1

Find the average rate of change of each function on the interval specified.
3. $f(x)=x+3$ on $[4,5]$

$$
\frac{\Delta y}{\Delta x}=\frac{f(5)-f(4)}{5-4}=\frac{((5)+3)-((4)+3)}{1}=\frac{8-7}{1}=1
$$

4. $g(x)=x^{2}+4 \quad$ on $[1,4]$

$$
\frac{\Delta y}{\Delta x}=\frac{f(4)-f(1)}{4-1}=\frac{\left((4)^{2}+4\right)-\left((1)^{2}+4\right)}{3}=\frac{20-5}{3}=\frac{15}{3}=5
$$

5. $h(x)=x^{2}+2 x$ on $[-5,-3]$

$$
\frac{\Delta y}{\Delta x}=\frac{f(-5)-f(-3)}{(-5)-(-3)}=\frac{\left((-5)^{2}+2(-5)\right)-\left((-3)^{2}+2(-3)\right)}{-2}=\frac{15-3}{-2}=-6
$$

6. $p(t)=\frac{x^{3}-2 x}{x^{2}+1}$ on $[-2,1]$

The inputs $t=-2$ and $t=1$ when put into the function $p(t)$ produce the points $\left(-2,-\frac{4}{5}\right)$ and $\left(1,-\frac{1}{2}\right)$. The average rate of change between these two points is

$$
\frac{\Delta y}{\Delta x}=\frac{p(1)-p(-2)}{(1)-(-2)}=\frac{-\frac{1}{2}-\left(-\frac{4}{5}\right)}{3}=\frac{-\frac{5}{10}+\frac{8}{10}}{3}=\frac{\frac{3}{10}}{3}=\frac{3}{10} * \frac{1}{3}=\frac{1}{10}
$$

Find the average rate of change of each function on the interval specified. Your answers will be expressions involving a parameter (b or h).
7. $f(x)=x^{3}-3 x$ on $[4, b]$

$$
\frac{\Delta y}{\Delta x}=\frac{f(b)-f(4)}{b-4}=\frac{\left(b^{3}-3 b\right)-\left((4)^{3}-3(4)\right)}{b-4}=\frac{b^{3}-3 b-52}{b-4}
$$

8. $g(x)=3 x^{2}-2$ on $[x, x+h]$

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{\left(3(x+h)^{2}-2\right)-\left(3 x^{2}-2\right)}{(x+h)-x}=\frac{\left(3(x+h)^{2}-2\right)-\left(3 x^{2}-2\right)}{h}=\frac{3(x+h)^{2}-2-3 x^{2}+2}{h}=\frac{3(x+h)^{2}-3 x^{2}}{h}= \\
& \frac{3\left(x^{2}+2 h x+h^{2}\right)-3 x^{2}}{h}=\frac{3 x^{2}+6 h x+3 h^{2}-3 x^{2}}{h}=\frac{6 h x+3 h^{2}}{h}=6 x+3 h=3(2 x+h) .
\end{aligned}
$$

9. Graph $h(x)=x^{5}+5 x^{4}+10 x^{3}+10 x^{2}-1$ on your calculator.
a. Find all the local extrema of the function and state what type it is.

The function has a local minimum at $(\mathbf{0}, \mathbf{- 1})$,
and a local maximum at $(-2,7)$.
b. Find the increasing intervals.

From the graph, we can see that the function is decreasing on the interval $(-2,0)$, and increasing on the intervals $(-\infty,-2)$ and $(0, \infty)$.
c. Find the decreasing intervals. the function is decreasing on the interval $(-2,0)$
d. Challenge: Define all the intervals that are concave up and concave down.

Approximate inflection points.
We can estimate that the function is concave down on the interval ($-\infty,-\mathbf{1}$), and concave up on the intervals $(-\infty,-1)$ and $(0, \infty)$. This means there is an inflection point at $x=-1$.

