A function is used to describe a relationship between two or more variables. However, sometimes this relationship changes for different input values. In this lesson, we will learn about a type of function called a piecewise function which is a way to combine parts of different functions into one function.

Explore

1. Graph these functions on separate graphs
a. $y=-\frac{2}{3} x+4$
b. $y=x^{2}$
2. Now cut out the left side (where $x<0$) of the graph $y=-\frac{2}{3} x+4$. Throw the other side away.
3. Cut out the right side (where $x \geq 0$) of the graph $y=x^{2}$.
4. Now take the two functions and tape them together at the y-axis.

This is the graph of

$$
y=\left\{\begin{array}{ccc}
-\frac{2}{3} x+4 & \text { if } & x<0 \\
x^{2} & \text { if } & x \geq 0
\end{array}\right.
$$

5. Copy your graph here

- The example above is called a piecewise function because the value of the function is made of two "pieces.
- We also note that the function is discontinuous since it has one points $(\mathrm{x}=0)$ that has a "jump" discontinuities.
- Note: the function is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$

Piecewise linear functions

A piecewise function definition like the one below gives a set of "rules" that define the output ($f(x)$) for any given input (x) value. Use the following function to answer questions 1 and2.

$$
F(x)=\left\{\begin{aligned}
x, & \text { if } x<0 \\
x+1, & \text { if } 0 \leq x<5 \\
2, & \text { if } x \geq 5
\end{aligned}\right.
$$

1. Find
$f(-2)=$
$f(0)=$
$f(1)=$
$f(3)=$
$f(5)=$
$f(6)=$
2. Use these values to help you graph the function.

To plot piecewise functions, we can begin by graphing each of the functions (like $y=0, y=x+1$, and $y=2$ above). Then "erase" part of the graph so that only part of the graph remains for the given domain piece. Endpoints are "closed" for included values and "open" for non-included values.

Mathematicians often choose to define more complicated functions using piecewise functions. This will greatly help us to model real-life situations

Try this

1. Plot this piecewise function

$$
f(x)=\left\{\begin{array}{c}
-x, \text { if } x<0 \\
x, \text { if } x \geq 0
\end{array}\right.
$$

2. What non-piece function has the same graph as this?

Try These Graph the piecewise functions and determine if they are continuous

1. $y=\left\{\begin{array}{c}x-1, \text { if } x \leq 0 \\ x^{2}, \text { if } x>0\end{array}\right.$
2. $y=\left\{\begin{array}{l}-2 x+1, \text { if } x \leq 1 \\ -2 x-1, \text { if } x>1\end{array}\right.$
3. $y=\left\{\begin{array}{c}x+1, \text { if } x<0 \\ 1, \text { if } 0 \leq x<1 \\ \sqrt{x}, \text { if } x \geq 1\end{array}\right.$

