Assignment 8C: Inverse Trig Functions

State the range of the inverse function and find the value of the expression on that range. Support your answer by sketching a unit circle and the appropriate angle.

1.
$$\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

2.
$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

3.
$$\tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}$$

Find the following values. Support your answer with a reference triangle or unit circle drawing.

4.
$$\arctan\left(\cos\left(\frac{\pi}{3}\right)\right) = \arctan\frac{1}{2} \approx .46 \ radians$$

5.
$$\tan\left(\sin^{-1}\left(\frac{5}{6}\right)\right) = \frac{5\sqrt{11}}{11}$$

$$Opp = 5, hyp = 6,$$

$$5^{2} + b^{2} = 6^{2}$$

$$b = 5\sqrt{11}$$

6.
$$\sin(\arctan(x)) = \frac{x}{\sqrt{x^2+1}}$$

(State your answer in terms of x)

let
$$\theta = \arctan(x)$$

 $\tan(\theta) = \frac{x}{1}$
 $opp = x, \quad adj = 1$
 $x^2 + 1^2 = c^2$
 $hyp = c = \sqrt{x^2 + 1}$

7.
$$\csc\left(\tan^{-1}\left(\frac{2}{x}\right)\right) = \frac{\sqrt{4+x^2}}{x}$$

(State your answer in terms of x)

let
$$\theta = \arctan\left(\frac{2}{x}\right)$$
, $\tan(\theta) = \frac{2}{x}$
 $opp = 2$, $adj = x$
 $x^2 + 2^2 = c^2$
 $hyp = c = \sqrt{x^2 + 4}$

8. Matt and Brad are watching a rocket that they shot vertically into the air. They measure the angle of elevation, θ , from where the rocket was launched. If the launch pad is 100ft. away from the boys, write an equation that relates θ to the shortest distance, x, from the boys to the rocket. $\cos \theta = \frac{100}{100}$

$$\theta(x) = \cos^{-1}\left(\frac{100}{x}\right)$$