7C: The Unit Circle

We have now learned about finding the values of the trig. functions in a right triangle. Now, we will place these angles in the coordinate plane and expand the concept of trigonometric functions to larger angles.

Functions from Coordinates

Consider This

- a) Find the value of *r* to the right.
- b) Find the 6 trig. functions for the angle θ shown to the right.

c) Now find the value of the 6 trig functions for the angle β below.

Trigonometric functions of any angle

If θ is an angle in standard position and P(x,y) is any point on the terminal side of the angle, then $r = \sqrt{x^2 + y^2}$ is the distance from P to the origin and

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}, \quad (x \neq 0)$$

$$\csc \theta = \frac{r}{y}, \quad (y \neq 0)$$

 $\sec \theta = \frac{r}{x}, \quad (x \neq 0)$

$$\cot \theta = \frac{x}{y}, \qquad (x \neq 0)$$

Special Angles (from special triangles)

Find the value of the 6 trig functions for a 330° angle.

Explore

1) Find the exact and approximate value of each variable.

2) Find the exact coordinates of A and D if C(1,0)

3) Find the following ratios (exactly): a. $\cos \frac{\pi}{6} =$

a.
$$\cos \frac{\pi}{6} =$$

b.
$$\sin \frac{\pi}{6} =$$

c.
$$\sin{-\frac{5\pi}{4}} =$$

d.
$$\cos -\frac{5\pi}{4} =$$

The circle in #2 above is called the *Unit Circle* because the radius is 1 unit.

Points on the Unit Circle

If P(x, y) is a point on the unit circle, then

$$sin \theta = y$$

$$cos \theta = x$$

$$sec \theta = \frac{1}{y}, \quad (y \neq 0)$$

$$tan \theta = \frac{y}{x}, \quad (x \neq 0)$$

$$cot \theta = \frac{x}{y}, \quad (x \neq 0)$$

Complete the Unit Circle

Use reference triangles to fill in all the angles (in degrees and radian) and coordinates on the unit circle. Then decide which of the 6 trig functions are positive or negative in each quadrant.

