Period:

Date:

Assignment 7C: The Unit Circle

Answer the following problems from your Lippman/Rasmussen textbook with as much detail, explanation, and work that is appropriate.

5.3: 3, 7, 12, 14, 15

3. The point *P* is on the unit circle. If the *y*-coordinate of *P* is $\frac{3}{5}$, and *P* is in quadrant II, find the *x* coordinate.

Because sine is the x-coordinate divided by the radius, we have $\sin \theta = \left(\frac{3}{5}\right)/1$ or just $\frac{3}{5}$. If we use the trig version of the Pythagorean theorem, $\sin^2 \theta + \cos^2 \theta = 1$, with $\sin \theta = \frac{3}{5}$, we get $\frac{9}{25} + \cos^2 \theta = 1$, so $\cos^2 \theta = \frac{25}{25} - \frac{9}{25}$ or $\cos^2 \theta = \frac{16}{25}$; then $\cos \theta = \pm \frac{4}{5}$. Since we are in quadrant 2, we know that $\cos \theta$ is negative, so the result is $-\frac{4}{5}$.

7. If $\sin(\theta) = \frac{3}{8}$ and θ is in the 2nd quadrant, find $\cos(\theta)$.

If $\sin \theta = \frac{3}{8}$ and $\sin^2 \theta + \cos^2 \theta = 1$, then $\frac{9}{64} + \cos^2 \theta = 1$, so $\cos^2 \theta = \frac{55}{64}$ and $\cos \theta = \frac{\pm \sqrt{55}}{8}$; in the second quadrant we know that the cosine is negative so the answer is $-\frac{\sqrt{55}}{8}$

12. For each of the following angles, find the reference angle and which quadrant the angle lies in. Then compute sine and cosine of the angle.

a.
$$\frac{4\pi}{3}$$
 $\frac{\pi}{3}$, III quadrant, $\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$, $\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}$

b.
$$\frac{2\pi}{3}$$
 $\frac{\pi}{3}$, II quadrant, $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$, $\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$

c.
$$\frac{5\pi}{6}$$
 $\frac{\pi}{6}$, II quadrant, $\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$, $\sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}$

d.
$$\frac{7\pi}{4}$$
 $\frac{\pi}{4}$, IV quadrant, $\cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$, $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

14. Give exact values for $sin(\theta)$ and $cos(\theta)$ for each of these angles.

a.
$$-\frac{2\pi}{3}$$

b.
$$\frac{17\pi}{4}$$

c.
$$-\frac{\pi}{6}$$

d.
$$10\pi$$

$$\sin\left(-\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2}, \cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2},$$

$$\sin\left(\frac{17\pi}{4}\right) = \frac{\sqrt{2}}{2}, \cos\left(\frac{17\pi}{4}\right) = \frac{\sqrt{2}}{2},$$

$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}, \cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$\sin(10\pi) = 0, \cos(10\pi) = 1$$

15. Find an angle θ with $0 < \theta < 360^{\circ}$ or $0 < \theta < 2\pi$ that has the same sine value as:

a.
$$\frac{\pi}{3}$$

- b. 80°
- c. 140° d. $\frac{4\pi}{3}$ e. 305°
- a. $\frac{\pi}{3}$ is in quadrant 1, where sine is positive; if we choose an angle with the same reference angle as $\frac{\pi}{3}$ but in quadrant 2, where sine is also positive, then it will have the same sine value. $\frac{2\pi}{3} = \pi - \frac{\pi}{3}$, so $\frac{2\pi}{3}$ has the same reference angle and sine as $\frac{\pi}{2}$.
- b. Similarly to problem a. above, $100^{\circ} = 180^{\circ} 80^{\circ}$, so both 80° and 100° have the same reference angle (80°), and both are in quadrants where the sine is positive, so 100° has the same sine as 80°.
- c. 140° is 40° less than 180°, so its reference angle is 40°. It is in quadrant 2, where the sine is positive; the sine is also positive in quadrant 1, so 40° has the same sine value and sign as 140°.
- d. $\frac{4\pi}{3}$ is $\frac{\pi}{3}$ more than π , so its reference angle is $\frac{\pi}{3}$. It is in quadrant 3, where the sine is negative. Looking for an angle with the same reference angle of $\frac{\pi}{3}$ in a different quadrant where the sine is also negative, we can choose quadrant 4 and $\frac{5\pi}{3}$ which is $2\pi - \frac{\pi}{3}$.
- e. 305° is 55° less than 360° , so its reference angle is 55° . It is in quadrant 4, where the sine is negative. An angle with the same reference angle of 55° in quadrant 3 where the sine is also negative would be $180^{\circ} + 55^{\circ} = 235^{\circ}$.

Compute the following exactly.

a.
$$\csc\left(\frac{\pi}{6}\right) = 2$$

b.
$$\tan\left(\frac{\pi}{4}\right) = 1$$

b.
$$\tan\left(\frac{\pi}{4}\right) = 1$$
 c. $\sec\left(\frac{7\pi}{4}\right) = \sqrt{2}$ d. $\cot\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{3}$

$$\cot\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{3}$$