Try These - Solutions.

- a) Since the equation is in standard form the center is (-12,13) and the radius in $\sqrt{144} = 12.$
- b) Add 5 to each side to rewrite the equation as $x^2 + (y 4.5)^2 = 10$. The center is (0,4.5) and the radius is $\sqrt{10}$.
- c) As stated in the hint, we need to complete the square twice to rewrite in standard form. Remember, to complete the square for an expression $x^2 + bx$ we need to add $\left(\frac{b}{2}\right)^2$.

$$x^{2} + 6x + y^{2} - 10y = 2$$

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} + y^{2} - 10y + \left(-\frac{10}{2}\right)^{2} = 2 + \left(\frac{6}{2}\right)^{2} + \left(-\frac{10}{2}\right)^{2}$$

$$(x^{2} + 6x + 9) + (y^{2} - 10y + 25) = 36$$

$$(x + 3)^{2} + (y - 5)^{2} = 36$$

$$Center: (-3,5), \quad Radius = 6$$

Practice Problems 1

Write each equation in standard form for a circle and sketch their graphs on the same axe to the right.

1.
$$(x-3)^2 + (y-2)^2 - 4 = 0$$
 $(x-3)^2 + (y-2)^2 = 4$ $(x-3)^2 + (y-2)^2 = 4$

2.
$$x^2 + 4 = 5 - (y+2)^2$$

2.
$$x^{2} + 4 = 5 - (y + 2)^{2}$$
 $X^{2} + (y + 2)^{2} = ((0, -2))^{2}$
3. $x^{2} + 6x + y^{2} - 4y = -9$ $(-2, -2)$ $(-$

$$(x+3)^2 + (y-2)^2 = 4$$
 $(-3,2)$

4.
$$x^2 + y^2 + 4y - 60 = 0$$

$$x^{2} + y^{2} + 4y + 4 = 60 + 4$$
 $C(0, -2)$
 $x^{2} + (y + 2)^{2} = 64$ $C = 8$

Standard Form Equation of an Ellipse

In general, the standard form equation of a ellipse with a semimajor axis of a, and a semiminor axis of b

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$

This gives us focal axes are y = k and x = h and foci of $(h \pm k, k)$ and $(h, k \pm c)$, with the Pythagorean relation $a^2 = b^2 + c^2$

Practice Problems

For each of the ellipses below, graph them and find the length of the major and minor axis.

$$1. \ \frac{x^2}{36} + \frac{y^2}{25} = 1$$

$$2. \ \frac{x^2}{4} + \frac{y^2}{49} = 1$$

$$\frac{149}{36} + \frac{1}{4} = 1$$
 $\frac{149}{36} + \frac{1}{4} = 1$
 $\frac{149}{36} + \frac{1}{4$

