From Two Variables to Three

We have now seen that if we have two equations with the same two variables x and y, we can consider this a system of two equations and solve for the ordered pair (x, y) that is a solution of both equations. (Note that we must have two equations to solve for a unique solution.)

Geometrically, we found that the solution is the point of intersection of the two lines. This also shows that we can have 0,1 , or infinite solutions depending on where (or if) they intersect.

Example Solve this system by substitution

$$
\begin{aligned}
2 x-y+z & =0, \quad E_{1} \\
x+2 y+4 z & =4, \quad E_{2} \\
z & =x-y, \quad E_{3}
\end{aligned}
$$

Step 1: Substitute E_{3} into E_{1} and E_{2} to write two new equations in terms of x and y.

Step 2: Solve these two equations for x and y.

Step 3: Use these values to solve forz.

Example Solve this system using Gaussian Elimination

$$
\begin{gathered}
2 x-y+z=0 \\
x+2 y+4 z=4 \\
-x+y+z=0 \\
\\
(x=2, y=3, z=-1)
\end{gathered}
$$

Example Solve this system using matrices and elementary row operations.

$$
\begin{aligned}
& 2 x-y+z=0 \\
& x+2 y+4 z=4 \\
& -x+y+z=0
\end{aligned}
$$

$$
(x=2, y=3, z=-1)
$$

Example Solve this system using matrices and elementary row operations.

$$
\begin{gathered}
x+y+z=10 \\
2 x-3 y+z=5 \\
2 x+2 y+2 z=20 \\
\left(x=-\frac{4 z}{5}+7, y=-\frac{z}{5}+3, z \in \mathbb{R}\right)
\end{gathered}
$$

Exercises

1. Solve this system by substitution

$$
\begin{aligned}
3 x-y+2 z & =-2 \\
y+3 z & =3 \\
2 z & =4
\end{aligned}
$$

$$
(x=-3, y=-3, z=2)
$$

2. Solve using Gaussian Elimination.

$$
\begin{aligned}
& x-y+z=0 \\
& 2 x-3 z=-1 \\
&-x-y+2 z=-1 \\
&(x=1, y=2, z=1)
\end{aligned}
$$

3. Solve the system using matrices and elementary row operations

$$
\begin{array}{r}
2 x+3 y-2 z=2 \\
3 x+3 y-z=6 \\
-3 y+3 z=3
\end{array}
$$

$$
(x=1, y=2, z=3)
$$

4. Solve the system using any method.

$$
\begin{gathered}
x+2 y=4 \\
3 x+4 y=5 \\
2 y+z=8 \\
\left(x=-3, y=\frac{7}{2}, z=1\right)
\end{gathered}
$$

