

Name:

0B: Midpoint Formula

Notes

When working in the Cartesian Coordinate System, it is often necessary to find the coordinates of the midpoint of a line segment.

Find the coordinates of the midpoint of \overline{AB} to the right. Explain how you know that this is the midpoint (without using the formula).

Assignment

- 1. Find the Coordinates of the midpoint of \overline{AB} with A(-4,5) and B(3,6)
- 2. Find the coordinates of the midpoint of \overline{PQ} with $P\left(\frac{2}{3},\frac{1}{2}\right)$ and $Q\left(-\frac{1}{2},\frac{2}{3}\right)$
- 3. M(3,5) is the midpoint of \overline{RS} . If one endpoint is R(-7,2), find the coordinates of *S*.
- 4. The length of the line segment between D(3,4) and E(-2, y) is 13. Find the coordinates of the midpoint of \overline{DE} .

- 5. Consider the right triangle with vertices M(3,2), J(3,6), and K(5,2).
 - a. Plot the triangle.
 - b. Find the coordinates of the midpoint of the hypotenuse (call this *C*).
 - c. Find the distance from this point *C* to each of the vertices.

$$CM = , CJ = , CK =$$

- d. What does this prove about the midpoint of the hypotenuse?
- 6. Consider the triangle with vertices A(4,1), B(8,5), C(2,7).
 - a. Plot the triangle
 - b. Find the length of each side.

$$AB = , BC = , AC =$$

- c. What type of triangle is *ABC*?
- d. Find the coordinates of the midpoint, M, for the base \overline{AB} .
- e. Find the area of $\triangle ABC$. (You will need to use the distance formula one more time to find the height \overline{CM}).

