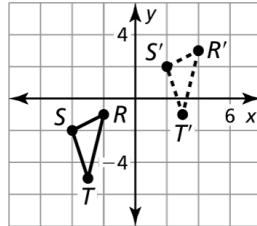



## 4.1 Practice A

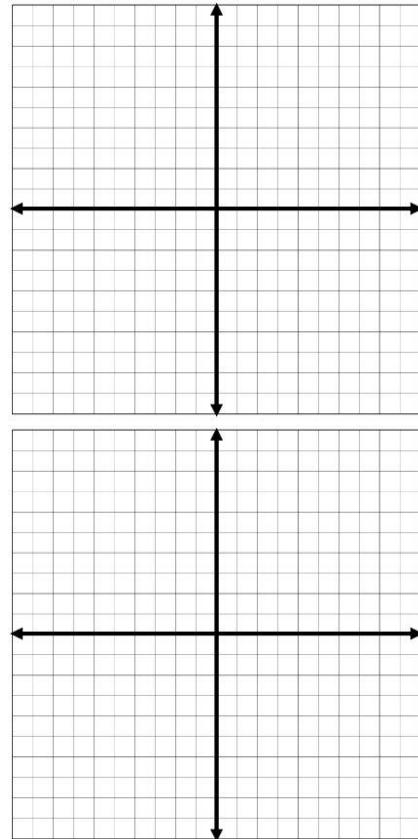
1. Name the vector and write its component form.




2. a) The vertices of  $\triangle ABC$  are  $A(2, 3)$ ,  $B(-1, 2)$ , and  $C(0, 1)$ . Translate  $\triangle ABC$  using the vector  $\langle 1, -4 \rangle$ . Graph  $\triangle ABC$  and its image.

b) The vertices of  $\triangle FGH$  are  $F(-2, -6)$ ,  $G(3, 0)$ , and  $H(1, -4)$ . Translate  $\triangle FGH$  using the vector  $\langle -2, 7 \rangle$ . Graph  $\triangle FGH$  and its image.

3. Find the component form of the vector that translates  $A(3, -2)$  to  $A'(-1, 4)$ .

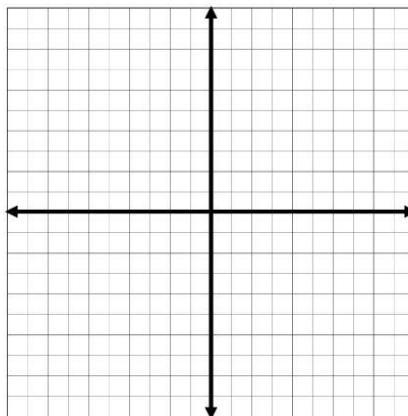
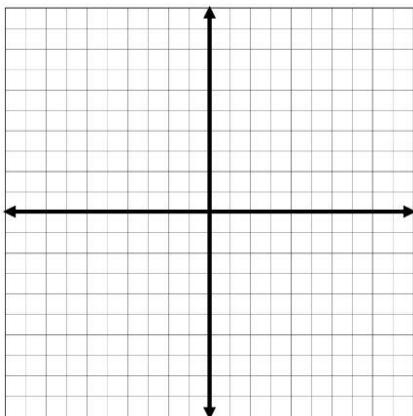

4. Write a rule for the translation of  $\triangle RST$  to  $\triangle R'S'T'$ .



In Exercises 5 and 6, use the translation  $(x, y) \rightarrow (x + 1, y - 3)$  to find the image of the given point.

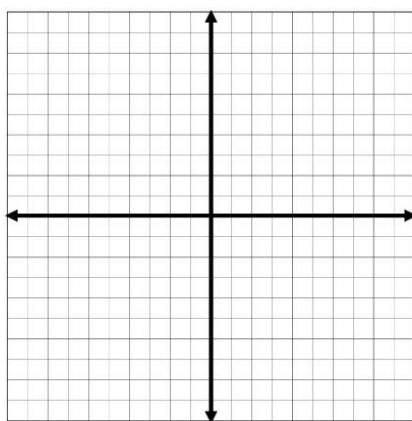
5.  $Q(5, 9)$

6.  $M(-3, -8)$


In Exercises 7 and 8, graph  $\triangle CDE$  with vertices  $C(-1, 3)$ ,  $D(0, -2)$ , and  $E(1, 1)$  and its image after the given translation or composition.

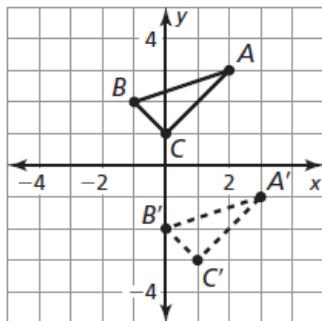
7. Translation:  $(x, y) \rightarrow (x - 3, y + 1)$


8. Translation:  $(x, y) \rightarrow (x + 10, y - 8)$

Translation:  $(x, y) \rightarrow (x - 7, y + 15)$



9. You want to plot the collinear points  $A(-2, 3)$ ,  $A'(x, y)$ , and  $A''(3, 7)$  on the same coordinate plane. Do you have enough information to find the values of  $x$  and  $y$ ? Explain your reasoning.

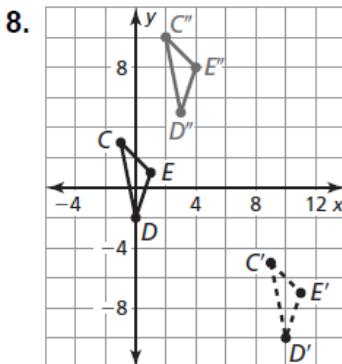
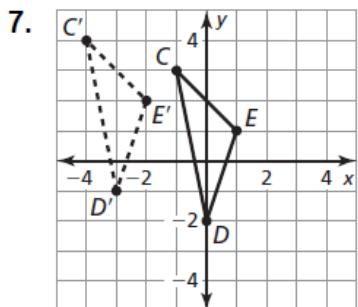

10. Graph any triangle and translate it in any direction. Draw translation vectors for each vertex of the triangle. Is there a geometric relationship between all the translation vectors? Explain why this makes sense in terms of the slope of the line.



### 4.1 Practice A

1.  $\overrightarrow{JK}; \langle -3, 2 \rangle$

2.  $A'(3, -1), B'(0, -2), C'(1, -3)$


3.  $\langle -4, 6 \rangle$

4.  $(x, y) \rightarrow (x + 6, y + 4)$

5.  $Q'(6, 6)$

6.  $M'(-2, -11)$



9. no; *Sample answer:* The translation from  $A$  to  $A'$  could be different than the translation from  $A'$  to  $A''$ .

10.  $(x, y) \rightarrow (x - 2, y - 3); 0.25 \text{ mi}$