

Find the coordinates of the midpoint *M*. Then find the distance between the two points.

3. A(-4, -8) and B(-1, 4)

4.
$$C(-1, 7)$$
 and $D(-8, -3)$

5. The midpoint of \overline{EF} is M(1, -1). One endpoint is E(-3, 2). Find the coordinates of endpoint *F*.

Use the diagram to decide whether the statement is true or false.

- 6. Points *A*, *R*, and *B* are collinear.
- **7.** \overrightarrow{BW} and \overrightarrow{AT} are lines.
- **8.** \overrightarrow{BR} and \overrightarrow{RT} are opposite rays.
- **9.** Plane *D* could also be named plane *ART*.

9.5 Use the drawing for 6-9 to answer these questions:

- a) Name a ray that is not named in problems 6-9
- b) Name the intersection of the two planes
- c) Name the intersection of \overrightarrow{BW} and \overrightarrow{AT}
- d) Are points A, B, W, T coplanar? Explain why.

Find the perimeter and area of the polygon with the given vertices. Explain how you found your answer.

10. P(-3, 4), Q(1, 4), R(-3, -2), S(3, -2)

11. J(-1, 3), K(5, 3), L(2, -2)

20

F

100

Δ

12. In the diagram, $\angle AFE$ is a straight angle and $\angle CFE$ is a right angle. Identify all supplementary and complementary angles. Explain. Then find $m \angle DFE$, $m \angle BFC$, and $m \angle BFE$.

13. If $m \angle BAC = (5x + 10)^\circ$, $m \angle CAD = (2x + 10)^\circ m \angle BAD = 160^\circ$, solve for x and find the measure of the angles.

14. Use the protractor to the right to find the measure of these angles and **classify the angle types**:

 $m \angle BAE =$

 $m \angle DAK =$

- 15. Draw an example of the following types of angle pairs. Name the angles with a 1 and 2.
 - a. Linear Pair
 - b. Vertical angles
 - c. Supplementary Angles
 - d. Complementary Angles
 - e. Adjacent Angless