1.3

Using Midpoint and Distance Formulas

For use with Exploration 1.3

Essential Question How can you find the midpoint and length of a line segment in a coordinate plane?

EXPLORATION: Finding the Midpoint of a Line Segment

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

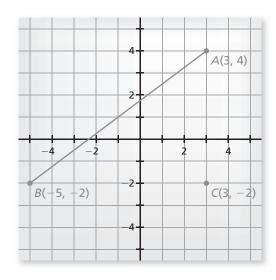
Work with a partner. Use centimeter graph paper.

- **a.** Graph \overline{AB} , where the points A and B are as shown.
- **b.** Explain how to *bisect* \overline{AB} , that is, to divide \overline{AB} into two congruent line segments. Then bisect \overline{AB} and use the result to find the *midpoint* M of \overline{AB} .

		-4-	-		A(3, 4)	-
		2-				_
-4 B(-5, -	-2	-2-		2	 4	_

c. What are the coordinates of the midpoint *M*?

d. Compare the *x*-coordinates of *A*, *B*, and *M*. Compare the *y*-coordinates of *A*, *B*, and *M*. How are the coordinates of the midpoint *M* related to the coordinates of *A* and *B*?


1.3 Using Midpoint and Distance Formulas (continued)

2 **EXPLORATION:** Finding the Length of a Line Segment

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use centimeter graph paper.

- **a.** Add point *C* to your graph as shown.
- **b.** Use the Pythagorean Theorem to find the length of \overline{AB} .

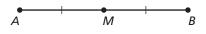
- **c.** Use a centimeter ruler to verify the length you found in part (b).
- **d.** Use the Pythagorean Theorem and point *M* from Exploration 1 to find the lengths of \overline{AM} and \overline{MB} . What can you conclude?

Communicate Your Answer

- 3. How can you find the midpoint and length of a line segment in a coordinate plane?
- **4.** Find the coordinates of the midpoint *M* and the length of the line segment whose endpoints are given.

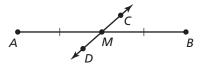
a.
$$D(-10, -4), E(14, 6)$$
 b. $F(-4, 8), G(9, 0)$

In your own words, write the meaning of each vocabulary term.


midpoint

segment bisector

Core Concepts


Midpoints and Segment Bisectors

The **midpoint** of a segment is the point that divides the segment into two congruent segments.

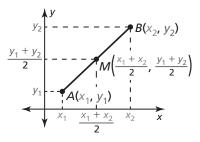
M is the midpoint of \overline{AB} . So, $\overline{AM} \cong \overline{MB}$ and AM = MB.

A **segment bisector** is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector *bisects* a segment.

 \overrightarrow{CD} is a segment bisector of \overrightarrow{AB} . So, $\overrightarrow{AM} \cong \overrightarrow{MB}$ and $\overrightarrow{AM} = MB$.

Notes:

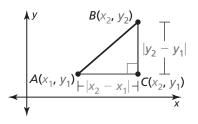
1.3 Notetaking with Vocabulary (continued)


The Midpoint Formula

The coordinates of the midpoint of a segment are the averages of the *x*-coordinates and of the *y*-coordinates of the endpoints.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint *M* of \overline{AB} has coordinates

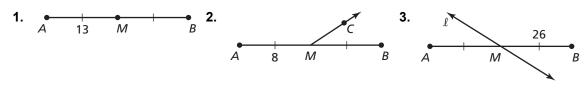
$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$
.


Notes:

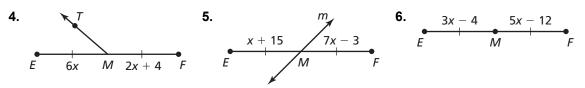
The Distance Formula

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between *A* and *B* is

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$



Notes:


1.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–3, identify the segment bisector of \overline{AB} . Then find AB.

In Exercises 4-6, identify the segment bisector of \overline{EF} . Then find EF.

In Exercises 7–9, the endpoints of \overline{PQ} are given. Find the coordinates of the midpoint *M*.

7. P(-4, 3) and Q(0, 5) **8.** P(-2, 7) and Q(10, -3) **9.** P(3, -15) and Q(9, -3)

In Exercises 10–12, the midpoint *M* and one endpoint of \overline{JK} are given. Find the coordinates of the other endpoint.

10.
$$J(7, 2)$$
 and $M(1, -2)$ **11.** $J(5, -2)$ and $M(0, -1)$ **12.** $J(2, 16)$ and $M\left(-\frac{9}{2}, 7\right)$