Exploring Inscribed Angles

In 1.	vestigation 1: Exploring Inscribe Angles Draw central angle $\angle AOB$ and measure it with a protractor. $m \angle AOB =$
	What is the measure of the intercepted arc \widehat{AB} ? $\widehat{mAB} = $
2.	Now draw 4 inscribed angles with endpoints A and B , and vertices on the major arc \widehat{AB} .
	Measure these inscribed angles with a protractor.
	What are the measurements of these inscribed angles? O Inscribed Angle Theorem: The measure of an inscribed angle
	is the measure of the intercepted arc.
3.	Prove it!
	There are three possible cases. Let's prove the inscribed angle theorem for one of these cases
	Given: Circle O with inscribed $\angle B$ and diameter \overline{AB} . Prove: $m \angle ABC = \frac{1}{2}m\widehat{AC}$

Inscribed Angle Corollaries:

Two inscribed angles that intercept the same arc are ______

An angle inscribed in a semicircle is a ______

The opposite angles of a quadrilateral inscribed in a circle are ______

Investigation 2: Chord-Tangent Angles

2. Find the equation of a line that is perpendicular to \overline{AP} that goes through point A.

Draw in this perpendicular line (without using a protractor). What kind of line is this in relation to the circle?

- 3. Draw in chord \overline{AC} . Measure the acute angle made by the chord \overline{AC} and this tangent line.
- 4. Measure $\angle CPA = _$
- 5. Find $m\widehat{CA} =$ _____
- 6. How do the measurement s in (3) and (5) relate?

Theorem: The measure of an angle formed by a tangent and a chord is

____ the measure of the intercepted arc.

