

Exploring Chords and Arcs

with Geometer's Sketchpad

In this activity, we will investigate properties of chords and arcs within a circle.

*Def. Chord – a line segment whose endpoints are*_____

 \overline{AB} is a chord of circle *O*.

Construction note: When making the following constructions, do not use the initial construction point on the circle as one of your endpoints for chords or arcs. Save this point as a handle to modify the size of the circle.

Part 1: Central Angles, Arcs, and Chords

- 1. Construct circle *O* (label the center *O*).
- 2. Construct central angles $\angle AOB$ and $\angle COD$ with endpoints on the circle.
- 3. Measure the angles $\angle AOB$ and $\angle COD$. Move the points until the two angles are congruent.
- 4. Construct chords \overline{AB} and \overline{CD} .
- 5. Measure these chords and complete this theorem with your observation:

Theorem: Congruent central angles have ______ chords. Move the points *A*, *B*, *C*, and *D* to verify this.

6. Measure the lengths of arcs \widehat{AB} and \widehat{CD} by selecting the circle and two endpoints, then go to the [Measure] menu.

Theorem: Congruent chords have ______ arcs

Move the points *A*, *B*, *C*, and *D* to verify this.

7. Finally use the transitive property to connect these two statements.

Theorem: Congruent central angles have ______ arcs. Move the points *A*, *B*, *C*, and *D* to verify this.

Part 2: Equidistant Chords

- 1. Start a new construction and construct circle *P*.
- 2. Construct chords \overline{AB} and \overline{CD} .
- 3. Construct a line Perpendicular to \overline{AB} that passes through *P*.
- 4. Construct the intersection of \overline{AB} and the perpendicular line and label it point *M*.
- 5. Construct a line Perpendicular to \overline{CD} that passes through *P*.
- 6. Construct the intersection of \overline{CD} and the perpendicular line and label it point *N*.
- 7. Measure the distances *MP* and *NP*, and the length of chords \overline{AB} and \overline{CD} .
- 8. Move the points *A*, *B*, *C*, and *D* until the chords are congruent. Now complete the following theorem by observing your measurements

Theorem: Congruent chords are ______ from the center. Move the points *A*, *B*, *C*, and *D* to verify this.

Theorem: We can also say that Chords that are ______ from the center are congruent.

Part 3: Diameters and Chords

- 1. Start a new construction and construct circle *Q*.
- 2. Construct chord \overline{AB}
- 3. Construct the perpendicular bisector of chord \overline{AB} . (Hint: you will need to make midpoints first)
- 4. Construct the intersection points where this perpendicular bisector intersects the circle. Label these points *C* and *D*.

What is special about segment \overline{CD} (what kind of segment is it)? Move the points *A* to *B* to verify that this is always true.

Theorem: In a circle the perpendicular bisector goes through the ______ of the circle.

Part 4: Diameters and Arcs

- 1. <u>Continue with the drawing</u> from part 3. Delete the perpendicular bisector and the midpoint of \overline{AB}
- 2. Construct point *E* on the circle.
- 3. Construct Line \overleftarrow{EQ}
- 4. Construct the intersection of this line and the circle (on the opposite side of *E*). Label this point *F*.

What kind of segment is \overline{EF} ?

- 5. Move *E* until \overline{EF} intersects \overline{AB} . Construct this intersection point and label it *G*.
- 6. Measure $\angle AGQ$. Measure segments \overline{AG} and \overline{GB} . Measure arcs \widehat{AE} , \widehat{BE} , \widehat{AF} , and \widehat{BF} .
- 7. Move *E* until the diameter is perpendicular to the chord. Complete the theorem:

Theorem: If a diameter is perpendicular to a chord, then it ______ the chord and the arcs. Move the endpoints of the diameter and the chord to verify this.

Part 5 (Challenge): Find the center

- 1. Copy a picture of a circular object (such as the earth or a wheel) into Geometer's Sketchpad.
- 2. Construct two chords on this circle.
- 3. Use what you discovered in the previous parts to find the center of the circle using constructions. (Do not guess at the center by trying to draw a random circle that fits).
- 4. Once you have found and constructed the center. Verify that it is the center by construction a circle from the center to the outside of the circle in the picture. Does the circle perfectly fit the picture?