Date:

## 1D Exercises

## Infinite Limits (And applications)

1. 
$$\lim_{x \to -\infty} \frac{3x^3 - 2x + 4}{x^3 + x^2 - 1}$$

2. 
$$\lim_{x \to \infty} \frac{4x^4 + 2x^3 - 1005}{(3x^2 + 2)^2}$$

3. 
$$\lim_{x \to \infty} \frac{2x-3}{x^2+6}$$

4. 
$$\lim_{x \to -\infty} \frac{15x^{301}}{x^{300} + 3x^{299}}$$

5. Use your calculator to find this limit numerically

$$\lim_{x \to \infty} \left( 1 + \frac{1}{n} \right)^n =$$

## Here are some good limit practice problems to tie it all together!

Here's a modified part of an example from the Free Response portion of the 2007 AP exam.

| x | f(x) | g(x) |
|---|------|------|
| 1 | 6    | 2    |
| 2 | 9    | 3    |
| 3 | 10   | 4    |
| 4 | -1   | 6    |

The functions f and g are continuous for all real numbers. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.

7.

If  $f(x) = x^3 - x^2 + x$ , show that there is a number x = c on some interval (a,b) such that f(c) = 10. Give the interval (a,b) in your answer.

8. Given the two functions f and h, such that

$$f(x) = x^3 - 3x^2 - 4x + 12$$
 and  $h(x) = \begin{cases} \frac{f(x)}{x - 3}, & x \neq 3 \\ p, & x = 3 \end{cases}$ 

(a) Find all the zeros of f.

(b) Find the value of p so that the function h is continuous at x = 3. Justify.

For 
$$f(x) = \begin{cases} cx^2 - 3, & x \le 2 \\ cx + 2, & x > 2 \end{cases}$$
, find the value of  $c$  to make  $f$  continuous at  $x = 2$ .

10. If 
$$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$
, and if  $f$  is continuous at  $x = 2$ , then  $k = 1$