

Name:

1A: Finding Limits Graphically and Numerically

Exploration

Suppose you have an empty gallon jug and you fill it with $\frac{1}{2}$ gallon of water the first day, then $\frac{1}{4}$ gallon the second day, then $\frac{1}{8}$ gallon, then $\frac{1}{16}$ gallon, and so on. If you continue this pattern, when will he need to get a 2nd milk jug to hold?

When there is a number that a function (or a series like the one above) gets very close to, but may never actually touch, this is called a limit.

Using Tables and Graphs

Let's consider a limit of a rational function. Take the function $f(x) = \frac{x-2}{x^2+x-6}$,

- a) Find f(2).
- b) Let's find out what the value of f is as we get real close to 2. Compute these from the outside-in. (Note, this is a good time to use the [*sto* \rightarrow] button on your calculator to define a function.)

x	1.9	1.99	1.999	2	2.001	2.01	2.1
f(x)							

What is the value that f(x) approaches as x approaches 2? We call this the "limit as x approaches 2" and write this $\lim_{x\to 2} f(x)$.

c) Graph the equation by hand, then check with a calculator. It may help to rewrite the function as

$$f(x) = \frac{x-2}{(x+3)(x-2)}$$

d) Use your calculator to graph the function. How does this help us find the limit as $x \rightarrow 2$?

What is a limit?

A limit is the value of a function as it gets arbitrarily close a given value of x. It's what f(x) is <u>approaching</u> as x gets close to c, even if the actual value of f(c) is not equal to the limit.

Definition: If f(x) becomes arbitrarily close (i.e. really close) to a single number *L* as *x* approaches *c* from either side, then the limit of f(x), as *x* approaches *c*, is *L*. This is written as

$$\lim f(x) = L$$

Three Types of limits	• Left hand limit: As x approaches c from the left side. Written $\lim_{x \to c^-} f(x)$					
	• Right hand limit : As x approaches c from the right side. Written $\lim_{x \to c^+} f$					
	• Function limit at $x = c$: requires two things: 1. $\lim_{x \to c^-} fx$ = L 2. $\lim_{x \to c^+} fx$ = L					

In other words... the limit exists if the function is approaching the same value *L* from the left and right.

<u>Try it</u> ι	Jse a	a graphing calculator to evalu	uate	these limits fOR $f(x) = \frac{x-1}{\sqrt{x-1}}$	$\frac{1}{1}$ a	nd $g(x) = \frac{x-1}{x^2-1}$
	a)	$\lim_{x\to 1^-} f(x) =$	b)	$\lim_{x \to 1^+} f(x) =$	c)	$\lim_{x \to 1} f(x) =$
	d)	$\lim_{x\to 1^-}g(x)=$	e)	$\lim_{x\to 1^+}g(x) =$	f)	$\lim_{x\to 1}g(x) =$

Limits and discontinuities

When we have discontinuities (breaks in a function) we will often want to find the limit as we approach the point of discontinuity.

 $\lim_{x \to 1} f(x) = 1$

 $\lim_{x \to 1} f(x)$ Does Not Exist because it's not the same from both sides

 $\lim_{x\to 0} f(x)$ Does Not Exist because it's not the same from both sides

Limits that fail to exist

Let's consider a few different cases of limits that cause trouble. Graph the functions below and find the given limit if you can.

It's important to understand that **there is a difference between the value of a function and the limit of a function**. Sometimes they are the same, and sometimes they are different. The value of a function is what happens at a point, the limit is what happens as it approaches that point. Use the graph of f(x) below to evaluate the following.

Let's take this one step further...

Here is a very technical definition... this is complicated, and you won't be tested on it.... This year!

Epsilon-Delta ε - δ Definition of a Limit:

Let (x) be a function defined on an open interval including c (except possibly at the value c, and let L be a real number. Then we can say

$$\lim_{x \to c} f(x) = L$$

if for any small number $\varepsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - c| < \delta$, then

$$f < |x - L| < \varepsilon$$

Example Back to our rational function

Consider the function $f(x) = \frac{x^3 - 2x^2}{x-2}$, use the $\varepsilon - \delta$ Definition to show that $\lim_{x \to 2} f(x) = 4$.

Find δ such that $\left|\frac{x^3-2x^2}{x-2}-4\right| < .001$ when $0 < |x-2| < \delta$.

In other words, find out how close does the x value have to be to 2 to make the value of f(x) within .001 of 4?