

<u>Consider These Integrals</u>: Can we use *u*-substitution or other techniques we've learned to find these integrals?

$$\int x^2 \ln x \, dx \quad , \qquad \int x \, e^x \, dx \quad , \qquad \int e^x \sin x \, dx$$

If you look closely, you'll notice that each of these are products of functions. So, let's remember our product rule:

$$\frac{d}{dx}[uv] = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx} = u'v + uv'$$

If we integrate both sides we obtain

$$uv = \int vu'dx + \int uv'dx = \int v\,du + \int u\,dv$$

Rewriting this we get this theorem.

Integration by Parts

If an integral is in the form $\int u \, dv$ for some differentiable functions u(x) and v(x), use

$$\int u\,dv = uv - \int v\,du$$

The key to using the Integration by Parts rule is to carefully define u and dv

GUIDELINES FOR INTEGRATION BY PARTS

- 1. Try letting dv be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand.
- 2. Try letting u be the portion of the integrand whose derivative is a function simpler than u. Then dv will be the remaining factor(s) of the integrand.

Note that dv always includes the dx of the original integrand.

Example 1 Integrate

$$\int x e^x$$

Option 1		Option 2		Option 3		Option 4	
<i>u</i> =	dv =						
du=	<i>v</i> =	du =	<i>v</i> =	du =	<i>v</i> =	du =	<i>v</i> =

Example 2: Integrate

$$\int x^2 \ln x \, dx$$

Example 3: Integrate a single factor

$$\int \arcsin x \ dx$$

Think of this as $1 \cdot \arcsin x$. Since you don't know how to integrate $\arcsin x$, let $u = \arcsin x$ **Example 4:** Repeat Integration by Parts. *If at first you don't succeed, try, try it again!*

$$\int x^2 \sin x \, dx$$

SUMMARY OF COMMON INTEGRALS USING INTEGRATION BY PARTS

1. For integrals of the form

$$\int x^n e^{ax} dx$$
, $\int x^n \sin ax dx$, or $\int x^n \cos ax dx$

let $u = x^n$ and let $dv = e^{ax} dx$, sin ax dx, or cos ax dx.

2. For integrals of the form

$$\int x^n \ln x \, dx, \qquad \int x^n \arcsin ax \, dx, \qquad \text{or} \qquad \int x^n \arctan ax \, dx$$

let $u = \ln x$, arcsin ax, or arctan ax and let $dv = x^n dx$.

3. For integrals of the form

$$\int e^{ax} \sin bx \, dx \qquad \text{or} \qquad \int e^{ax} \cos bx \, dx$$

let $u = \sin bx$ or $\cos bx$ and let $dv = e^{ax} dx$.