AP Calculus A/B Practice Test #5

Multiple Choice (Goal: 3 min. each) 1997

No Calculator

11. The graph of the derivative of f is shown in the figure above. Which of the following could be the graph of f?

(A)

(C)

(D)

(E)

- 12. At what point on the graph of $y = \frac{1}{2}x^2$ is the tangent line parallel to the line 2x 4y = 3?
 - (A) $\left(\frac{1}{2}, -\frac{1}{2}\right)$ (B) $\left(\frac{1}{2}, \frac{1}{8}\right)$ (C) $\left(1, -\frac{1}{4}\right)$ (D) $\left(1, \frac{1}{2}\right)$ (E) $\left(2, 2\right)$

- 13. Let f be a function defined for all real numbers x. If $f'(x) = \frac{\left|4-x^2\right|}{x-2}$, then f is decreasing on the interval

 - (A) $\left(-\infty,2\right)$ (B) $\left(-\infty,\infty\right)$ (C) $\left(-2,4\right)$ (D) $\left(-2,\infty\right)$ (E) $\left(2,\infty\right)$

- 14. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x = 3 is used to find an approximation to a zero of f, that approximation is
 - (A) 0.4
- (B) 0.5
- (C) 2.6
- (D) 3.4
- (E) 5.5

- 15. The graph of the function f is shown in the figure above. Which of the following statements about f is true?
 - $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$
 - $\lim_{x \to a} f(x) = 2$ (B)
 - $\lim_{x\to b} f(x) = 2$ (C)
 - $\lim_{x \to b} f(x) = 1$ (D)
 - $\lim_{x \to a} f(x)$ does not exist. (E)

- 16. The area of the region enclosed by the graph of $y = x^2 + 1$ and the line y = 5 is
 - (A) $\frac{14}{3}$ (B) $\frac{16}{3}$ (C) $\frac{28}{3}$ (D) $\frac{32}{3}$

- (E) 8π
- 17. If $x^2 + y^2 = 25$, what is the value of $\frac{d^2y}{dx^2}$ at the point (4,3)?
 - (A) $-\frac{25}{27}$ (B) $-\frac{7}{27}$ (C) $\frac{7}{27}$ (D) $\frac{3}{4}$ (E) $\frac{25}{27}$

- 18. $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^2 x} dx$ is
 - (A) 0
- (B) 1
- (C) e-1 (D) e
- (E) e+1

- 19. If $f(x) = \ln |x^2 1|$, then f'(x) =
 - (A) $\left| \frac{2x}{x^2 1} \right|$
 - (B) $\frac{2x}{\left|x^2-1\right|}$
 - (C) $\frac{2|x|}{x^2-1}$
 - (D) $\frac{2x}{x^2-1}$
 - (E) $\frac{1}{x^2-1}$

- 20. The average value of $\cos x$ on the interval [-3,5] is
 - $(A) \ \frac{\sin 5 \sin 3}{8}$
 - (B) $\frac{\sin 5 \sin 3}{2}$
 - (C) $\frac{\sin 3 \sin 5}{2}$
 - (D) $\frac{\sin 3 + \sin 5}{2}$
 - (E) $\frac{\sin 3 + \sin 5}{8}$

Free Response (Goal: 15 min. each)

AP-2005-CR

- 1. Let f and g be the functions given by $f(x) = \frac{1}{4} + \sin(\pi x)$ and $g(x) = 4^{-x}$. Let R be the shaded region in the first quadrant enclosed by the g-axis and the graphs of g and let g be the shaded region in the first quadrant enclosed by the graphs of g and g, as shown in the figure above.
 - (a) Find the area of R.
 - (b) Find the area of S.
 - (c) Find the volume of the solid generated when S is revolved about the horizontal line y = -1.

2. The tide removes sand from Sandy Point Beach at a rate modeled by the function R, given by

$$R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right).$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by

$$S(t) = \frac{15t}{1+3t}.$$

Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.

- (a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
- (b) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t.
- (c) Find the rate at which the total amount of sand on the beach is changing at time t = 4.
- (d) For $0 \le t \le 6$, at what time t is the amount of sand on the beach a minimum? What is the minimum value? Justify your answers.

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

- 4. Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.
 - (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
 - (b) On the axes provided, sketch the graph of a function that has all the characteristics of f.

(Note: Use the axes provided in the pink test booklet.)

- (c) Let g be the function defined by $g(x) = \int_1^x f(t) dt$ on the open interval (0, 4). For 0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

1997 Calculus AB Solutions: Part A

11. E Since f' is positive for -2 < x < 2 and negative for x < -2 and for x > 2, we are looking for a graph that is increasing for -2 < x < 2 and decreasing otherwise. Only option E.

12. B
$$y = \frac{1}{2}x^2$$
; $y' = x$; We want $y' = \frac{1}{2} \implies x = \frac{1}{2}$. So the point is $(\frac{1}{2}, \frac{1}{8})$.

13. A $f'(x) = \frac{\left|4 - x^2\right|}{x - 2}$; f is decreasing when f' < 0. Since the numerator is non-negative, this is only when the denominator is negative. Only when x < 2.

14. C
$$f(x) \approx L(x) = 2 + 5(x - 3)$$
; $L(x) = 0$ if $0 = 5x - 13 \implies x = 2.6$

15. B Statement B is true because $\lim_{x\to a^{-}} f(x) = 2 = \lim_{x\to a^{+}} f(x)$. Also, $\lim_{x\to b} f(x)$ does not exist because the left- and right-sided limits are not equal, so neither (A), (C), nor (D) are true.

16. D The area of the region is given by
$$\int_{-2}^{2} (5 - (x^2 + 1)) dx = 2(4x - \frac{1}{3}x^3) \Big|_{0}^{2} = 2\left(8 - \frac{8}{3}\right) = \frac{32}{3}$$

17. A
$$x^2 + y^2 = 25$$
; $2x + 2y \cdot y' = 0$; $x + y \cdot y' = 0$; $y'(4,3) = -\frac{4}{3}$;
$$x + y \cdot y' = 0 \implies 1 + y \cdot y'' + y' \cdot y' = 0$$
; $1 + (3)y'' + \left(-\frac{4}{3}\right) \cdot \left(-\frac{4}{3}\right) = 0$; $y'' = -\frac{25}{27}$

18. C $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^{2} x} dx \text{ is of the form } \int e^{u} du \text{ where } u = \tan x..$ $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^{2} x} dx = e^{\tan x} \Big|_{0}^{\frac{\pi}{4}} = e^{1} - e^{0} = e - 1$

19. D
$$f(x) = \ln |x^2 - 1|$$
; $f'(x) = \frac{1}{x^2 - 1} \cdot \frac{d}{dx} (x^2 - 1) = \frac{2x}{x^2 - 1}$

20. E $\frac{1}{8} \int_{-3}^{5} \cos x \, dx = \frac{1}{8} (\sin 5 - \sin(-3)) = \frac{1}{8} (\sin 5 + \sin 3)$; Note: Since the sine is an odd function, $\sin(-3) = -\sin(3)$.

AP" CALCULUS AB 2005 SCORING GUIDELINES

Question 1

Let f and g be the functions given by $f(x) = \frac{1}{4} + \sin(\pi x)$ and $g(x) = 4^{-x}$. Let

R be the shaded region in the first quadrant enclosed by the y-axis and the graphs of f and g, and let S be the shaded region in the first quadrant enclosed by the graphs of f and g, as shown in the figure above.

- (a) Find the area of R.
- (b) Find the area of S.
- (c) Find the volume of the solid generated when S is revolved about the horizontal line y = -1.

$$f(x) = g(x)$$
 when $\frac{1}{4} + \sin(\pi x) = 4^{-x}$.

f and g intersect when x = 0.178218 and when x = 1. Let a = 0.178218.

(a)
$$\int_0^a (g(x) - f(x)) dx = 0.064$$
 or 0.065

3: { 1: limits 1: integrand 1: answer

(b)
$$\int_{a}^{1} (f(x) - g(x)) dx = 0.410$$

3: $\begin{cases}
1: \text{ limits} \\
1: \text{ integrand} \\
1: \text{ answer}
\end{cases}$

(c)
$$\pi \int_{a}^{1} ((f(x)+1)^{2} - (g(x)+1)^{2}) dx = 4.558 \text{ or } 4.559$$

3: { 2: integrand
1: limits, constant, and answe

Question 2

The tide removes sand from Sandy Point Beach at a rate modeled by the function R, given by

$$R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right)$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by

$$S(t) = \frac{15t}{1+3t}.$$

Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.

- (a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
- (b) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t.
- (c) Find the rate at which the total amount of sand on the beach is changing at time t = 4.
- (d) For 0 ≤ t ≤ 6, at what time t is the amount of sand on the beach a minimum? What is the minimum value? Justify your answers.

(a)
$$\int_0^6 R(t) dt = 31.815 \text{ or } 31.816 \text{ yd}^3$$

2: { 1 : integral 1 : answer with units

(b)
$$Y(t) = 2500 + \int_0^t (S(x) - R(x)) dx$$

3: { 1 : integrand 1 : limits 1 : answer

(c)
$$Y'(t)=S(t)-R(t)$$

 $Y'(4)=S(4)-R(4)=-1.908 \text{ or } -1.909 \text{ yd}^3/\text{hr}$

1: answer

3: $\begin{cases}
1 : sets Y'(t) = 0 \\
1 : critical t-value \\
1 : answer with justification
\end{cases}$

The amount of sand is a minimum when t = 5.117 or 5.118 hours. The minimum value is 2492.369 cubic yards.

X	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f"(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [0, 4). The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum</p> or a relative minimum at each of these values. Justify your answer.
- (b) On the axes provided, sketch the graph of a function that has all the characteristics of f. (Note: Use the axes provided in the pink test booklet.)
- (c) Let g be the function defined by $g(x) = \int_1^x f(t) dt$ on the open interval (0, 4). For 0 < x < 4, find all values of x at which g has a relative extremum. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.

- (d) For the function g defined in part (c), find all values of x, for 0 < x < 4, at which the graph of g has a point of</p> inflection. Justify your answer.
- (a) f has a relative maximum at x = 2 because f' changes from positive to negative at x = 2.
- 1 : relative extremum at x = 21: relative maximum with justification

1: points at x = 0, 1, 2, 3and behavior at (2, 2) 1: appropriate increasing/decreasing and concavity behavior

(b)

- (c) g'(x) = f(x) = 0 at x = 1, 3. g' changes from negative to positive at x = 1 so g has a relative minimum at x = 1. g' changes from positive to negative at x = 3so g has a relative maximum at x = 3.
- (d) The graph of g has a point of inflection at x = 2 because g'' = f'changes sign at x = 2.
- $\int 1 : g'(x) = f(x)$ 3: { 1 : critical points 1 : answer with justification

1 : answer with justification