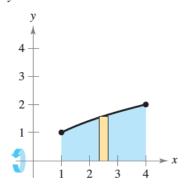
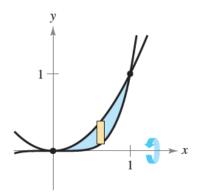
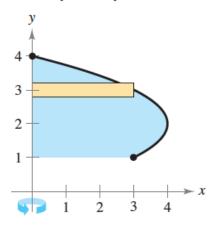

Name: Date:

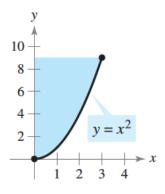
5D1 Exercises


Disk Method

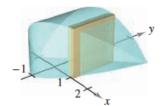
Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

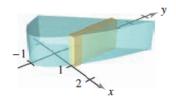

1.
$$y = -x + 1$$


3.
$$y = \sqrt{x}$$


5.
$$y = x^2$$
, $y = x^5$

10. $x = -y^2 + 4y$

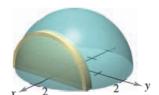

- 54. The region in the figure is revolved about the indicated axes and line. Order the volumes of the resulting solids from least to greatest. Explain your reasoning.
 - (a) x-axis
- (b) y-axis
- (c) x = 3



- 69. Think About It Match each integral with the solid whose volume it represents, and give the dimensions of each solid.
 - (a) Right circular cylinder
- (b) Ellipsoid

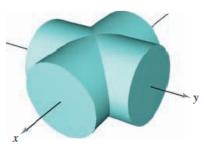
- (c) Sphere
- (d) Right circular cone
- (i) $\pi \int_0^h \left(\frac{rx}{h}\right)^2 dx$ (ii) $\pi \int_0^h r^2 dx$
- (iii) $\pi \int_{-r}^{r} (\sqrt{r^2 x^2})^2 dx$ (iv) $\pi \int_{-b}^{b} \left(a \sqrt{1 \frac{x^2}{b^2}} \right)^2 dx$
- (v) $\pi \int_{-\infty}^{r} \left[\left(R + \sqrt{r^2 x^2} \right)^2 \left(R \sqrt{r^2 x^2} \right)^2 \right] dx$

- 71. Find the volumes of the solids whose bases are bounded by the graphs of y = x + 1 and $y = x^2 1$, with the indicated cross sections taken perpendicular to the x-axis.
 - (a) Squares
- (b) Rectangles of height 1



- 72. Find the volumes of the solids whose bases are bounded by the circle $x^2 + y^2 = 4$, with the indicated cross sections taken perpendicular to the *x*-axis.
 - (a) Squares
- (b) Equilateral triangles

- 72. Find the volumes of the solids whose bases are bounded by the circle $x^2 + y^2 = 4$, with the indicated cross sections taken perpendicular to the *x*-axis.
 - (c) Semicircles



(d) Isosceles right triangles

Extra Challenge Problem! (Optional, but interesting)

73. Find the volume of the solid of intersection (the solid common to both) of the two right circular cylinders of radius r whose axes meet at right angles (see figure).

Two intersecting cylinders

Solid of intersection