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Unit 4 Toolkit: Integration

4A: Area Approximations (4.2)

Properties of Summations

Using the distributive and associative properties of addition, we can
prove these important properties (k is a constant).
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THEOREM 4.2 SUMMATION FORMULAS
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4B: Summation Notation and Area (4.3)

DEFINITION OF RIEMANN SUM

given by

a=Xy <X <Xy, <-: <X, <Xx,=b

subinterval [x;_, x;], then the sum
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is called a Riemann sum of f for the partition A.

Let f be defined on the closed interval [a, b], and let A be a partition of [a, b]

where Ax; is the width of the ith subinterval. If c; is any point in the ith




THEOREM 4.4 CONTINUITY IMPLIES INTEGRABILITY

If a function fis continuous on the closed interval [a, b], then fis integrable
on [a, b]. That is, [” f(x) dx exists.

DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS

1. If fis defined at x = a, then we define f fx)dx = 0.
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2. If fis integrable on [a, b], then we define f fx)dx = — f f(x) dx.
b a

THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS

If fand g are integrable on [a, b] and k is a constant, then the functions kf and
f £ g are integrable on [a, b], and
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1. f kf(x)dx = k| f(x)dx
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4C: Antiderivatives and Indefinite Integrals (4.1)




BASIC INTEGRATION RULES

Differentiation Formula Integration Formula
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dx[x] nx J’xdx n+1+C, n#—1 Power Rule
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E[smx]=cosx fcosxdx=smx+c

d . .

E[cosx]= —sinx fsmxdx= —cosx + C

d , ,

a[tanx] = sec2x sec’xdx = tanx + C

d

E[secx]=secxtanx fsecxtanxdx=secx+C
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E[cotx] = —csc2x fcsc%rdx = —cotx + C

d

a[cscx]= —csc x cot x J'cscxcotxdx= —cscx + C
Ordinary Differential Equation: % = f(x,y)

e A General Solution is found by integrating both sides. The resulting function will have a general
constant, c.
e A Particular Solution is found by integrating, then applying initial conditions.

4D: The Fundamental Theorem of Calculus (4.4)

First Fundamental Theorem of Calculus (FTC1)

If f is continuous on [a, b] and F is the antiderivative of f, then
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THEOREM 4.10 MEAN VALUE THEOREM FOR INTEGRALS

b
f £0) dx = £(O)b — a).

If fis continuous on the closed interval [a, b], then there exists a number ¢ in
the closed interval [a, b] such that
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DEFINITION OF THE AVERAGE VALUE OF A FUNCTION ON AN INTERVAL Py AV°“7° value
s
If fis integrable on the closed interval [a, b], then the average value of f on r N_ "
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Average value = T L f(x)dx

4E: Integration by Substitution (4.5)
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THEOREM 4.14 THE GENERAL POWER RULE FOR INTEGRATION

If g is a differentiable function of x, then
n+l
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Equivalently, if u = g(x), then

un+1
udu = +C, n#+—1.
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THEOREM 4.16 INTEGRATION OF EVEN AND ODD FUNCTIONS

Let f be integrable on the closed interval [—a, a].

1. If fis an even function, then f fx)dx =2 f f(x) dx.
—a 0

2. If fis an odd function, then f f(x)dx = 0.




