

When finding the approximation of the area under a curve using rectangles, we found ourselves adding many areas together to make one large area. This process is called a *summation*. Very often, summations can have too many terms to write out, so we need a way to denote it.

<u>Consider this</u>: Find the sum of the first 100 positive integers. Describe your strategy for finding the solution.

 $1 + 2 + 3 + 4 + \dots + 97 + 98 + 99 + 100$

In Sigma notation, we can write this like this

$$\sum_{i=1}^{100} i = 1 + 2 + \dots + 100$$

Sigma Notation

The sum of *n* terms $a_1, a_2, a_3, \dots, a_n$ can be written as

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

where *i* is the **index** of the summation, a_i is the *i*th term of the sum, and the **upper and lower bounds** are 1 and *n*.

Example Write out the terms of each summation

1.
$$\sum_{i=1}^{5} 2i =$$
2.
$$\sum_{j=1}^{4} (2j+1) =$$
3.
$$\sum_{k=3}^{8} k^{2}$$
4.
$$\sum_{i=1}^{n} \frac{1}{n} (n-1) =$$
5.
$$\sum_{i=1}^{n} f(x_{i}) \Delta x$$

<u>Finding Formulas</u> Use patterns to the following sums, write the general sum in sigma notation.

# of terms	1	2	3	4	5	 100	 n
Sum							

1. What the sum of the first 100 even numbers? How about the first *n* even numbers?

2. What is the sum of the first 100 natural numbers? How about the first *n* natural numbers?

# of terms	1	2	3	4	5	 100	 n
Sum							

3. What is the sum of the first 100 odd numbers? How about the first *n* odd numbers?

# of terms	1	2	3	4	5	 100	 n
Sum							

4. What is the sum of the first 100 square numbers? How about the first *n* square numbers?

# of terms	1	2	3	4	5	 100	 n
Sum	1	5	14	30	55		

Remember that Sigma notation is just a shortcut for writing out a long string of terms of a sum. So, we can do algebra with the Sigma notation and save a lot of writing.

Properties of Summations

Using the distributive and associative properties of addition, we can prove these important properties (*k* is a constant).

$$\sum_{i=1}^{n} k a_i = k \sum_{i=1}^{n} a_i \qquad \text{and} \qquad \sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

We also have these useful theorems that are a result of what you discovered in the previous page.

<u>*Example*</u> Evaluate the following sum for n = 10, 100, 1000, and 10000.

$$\sum_{i=1}^{n} \frac{i+1}{n^2}$$

Back to Area...

Okay, so what does this have to do with area? When we are finding an approximation for the are under a curve, we are just doing repeated addition of many small areas – That's a summation!

<u>Try it out!</u> Approximate the area under the curve given by $f(x) = 17 - x^2$ between x = 0 and x = 4 using five rectangles. Find an Upper Sum and a Lower Sum.

Lower Sum:

Upper Sum:

