

Optimization

1. A farmer wants to fence in a rectangular pen so that is against a building. If he has 100 feet of fencing for the 3 sides of the pen, find the dimensions of the pen that will give him a *maximum area* in the pen.

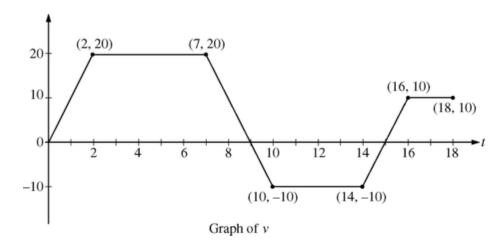
2. Find the point on the graph of $y = (x + 2)^2$ that is closest to the point (3,5).

3. A rectangular prism has a base that has a length that is twice the width. If the surface area of the box is 200 in^2 , find the dimensions of the box that will *maximize* the volume.

One Dimensional Movement

4.

Two particles move along the *x*-axis. For $0 \le t \le 8$, the position of particle *P* at time *t* is given by $x_P(t) = \ln(t^2 - 2t + 10)$, while the velocity of particle *Q* at time *t* is given by $v_Q(t) = t^2 - 8t + 15$. Particle *Q* is at position x = 5 at time t = 0.


- (a) For $0 \le t \le 8$, when is particle *P* moving to the left?
- (b) For $0 \le t \le 8$, find all times t during which the two particles travel in the same direction.
- (c) Find the acceleration of particle Q at time t = 2. Is the speed of particle Q increasing, decreasing, or neither at time t = 2? Explain your reasoning.

5.

For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$. The particle is at position x = 2 at time t = 4.

(a) At time t = 4, is the particle speeding up or slowing down?

(b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.

A squirrel starts at building A at time t = 0 and travels along a straight, horizontal wire connected to building B. For $0 \le t \le 18$, the squirrel's velocity is modeled by the piecewise-linear function defined by the graph above.

- (a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason for your answer.
- (b) At what time in the interval $0 \le t \le 18$ is the squirrel farthest from building A?

Related Rates

7. The longer leg of a right triangle is shrinking at 2 inches per second, and the shorter leg of the triangle is stretching at 1 inch per second. Find the rate of change of the hypotenuse when the longer leg is 10 inches and the shorter leg is 7 inches.

8. The radius of r of a sphere is increasing at a rate of 3 inches per second. Find the change in the volume $V = \frac{4}{3}\pi r^3$ when the radius is 6 inches.

9. A man 6 feet tall walks at a rate of 3 feet per second away from a light that is 18 feet above the ground. When he is 12 feet from the base of the light, at what rate is the tip of the shadow moving?