

Name:

Date:

<u>Curve Sketching</u> No calculator is allowed for these problems.

Part 1

- 1. The graph of the derivative f' of a continuous function f(x) on [0,8] is shown to the right. Answer the following questions regarding the graph of f.
 - a) On what open interval(s) is *f* increasing? Justify
 - b) At what x-value(s) does f(x) have a local maximum or minimum? Justify

d) Where does f have an inflection point?

Assuming f(0) = 0, sketch a possible graph of f. Determine the x-value(s) where f attains its maximum and/or minimum value(s). No calculator is allowed for these problems.

- (A) $(-\infty, +\infty)$ (B) $(0, +\infty)$
- (C) $(-\infty, 0)$
- (D) (0,1)
- (E) (-1,0)

10. The absolute maximum of $f(x) = \frac{x}{x^2 + 1}$ is

- 0 (A)
- (B) .25
- (C) .5
- .75 (D)
- (E) 1

11. On what interval(s) is the graph of $f(x) = \frac{x}{x^2 + 1}$ concave down?

- (A) $(0, \sqrt{3})$
- (B) $(-\sqrt{3}, 0)$
- (C) $(-\sqrt{3}, 0) \cup (0, +\infty)$
- (D) $(-\infty, -\sqrt{3}) \cup (0, \sqrt{3})$
- (E) $(\sqrt[3]{}, +\infty)$

- 12. The graph of f', the derivative of the function f, is shown above. Which of the following statements is true about f?
 - (A) f is decreasing for $-1 \le x \le 1$

(B) *f* is increasing for $-2 \le x \le 0$

- (C) *f* is increasing for $-1 \le x \le 2$
- (E) f is not differentiable at x = -1 d x = 1
- (D) f has a local minimum at x = 0

- 13. The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph **6** f'' is shown above. For what values of x does the graph of f have a point of inflection?
 - (A) 0 and a only (B) 0 and m only (C) b and j only (D) 0, *a*, and *b* (E) *b*, *j*, and *k*

14. Over which interval(s) are the signs of both f' and f' the same for $f(x) = 3x^4 - 4x^3 + 6$?

- (A) $(0, \underline{2})$
- $\begin{array}{ll} (B) & (-\infty, 0) \\ (C) & (-\infty, 0) \cup (\underline{-2}, +\infty) \end{array}$
- (D) $(0, \frac{2}{3}) \cup (1, +\infty)$
- (E) $(\frac{2}{3}, +\infty)$

15. Use the your work in #14 to sketch $f(x) = 3x^4 - 4x^3 + 6$.

Classify the critical points for the following function as a relative maximum, relative minimum, or neither; determine intervals of concave up or down; then sketch the graph.

$$16. \quad f(x) = \frac{x}{x^2 - 1}$$

relative maximum:

relative minimum:

neither:

 $\xleftarrow{} f' \\ \xleftarrow{} f''$

f(x) concaving up:

f(x) concaving down:

Classify the critical points for the following function as a relative maximum, relative minimum, or neither; determine intervals of concave up or down; then sketch the graph.

17.
$$f(x) = \frac{1}{3}x^3 - 2\ln|x|$$

relative maximum:

relative minimum:

neither:

 $\longleftrightarrow f'$

f(x) concaving up:

f(x) concaving down:

	ANSWERS:								
ľ	1) D	3) C 5) F	6) A	8) graph	n 10) C	12) B	14) D	16) no max, no min, no neither ; conc up $(-1,0)$ $(1,+\infty)$, conc down $(-\infty,-1)$ $(0,1)$	
	2) D	4) $c \min; f \max$	7) B	9) B	11) D	13) A	15) graph	17) no max, min at $\sqrt[3]{2}$, neither at 0; conc up (-1,0) (0,+ ∞), conc down (- ∞ ,-1)	