

3C.1 Exercises

Concavity and The 2nd Derivative

Find the Points of Inflection and the Intervals of Concavity

19.
$$f(x) = \frac{1}{2}x^4 + 2x^3$$

$$f'(x) = 2x^3 + 6x^2$$

$$f''(x) = 6x^2 + 12x = 6x(x+2)$$

$$f''(x) = 0$$
 when $x = 0, -2$

Concave upward: $(-\infty, -2)$, $(0, \infty)$

Concave downward: (-2, 0)

Points of inflection: (-2, -8) and (0, 0)

23.
$$f(x) = \frac{1}{4}x^4 - 2x^2$$

$$f'(x) = x^3 - 4x$$

$$f''(x) = 3x^2 - 4$$

$$f''(x) = 3x^2 - 4 = 0$$
 when $x = \pm \frac{2}{\sqrt{3}}$.

Points of inflection: $\left(\pm \frac{2}{\sqrt{3}}, -\frac{20}{9}\right)$

Test interval:	$-\infty < x < -\frac{2}{\sqrt{3}}$	$-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{3}} < x < \infty$
Sign of $f''(x)$:	f''(x) > 0	f''(x) < 0	f''(x) > 0
Conclusion:	Concave upward	Concave downward	Concave upward

21.
$$f(x) = x^3 - 6x^2 + 12x$$

$$f'(x) = 3x^2 - 12x + 12$$

$$f''(x) = 6(x - 2) = 0$$
 when $x = 2$.

Concave upward: (2, ∞)

Concave downward: $(-\infty, 2)$

Point of inflection: (2, 8)

25.
$$f(x) = x(x-4)^3$$

$$f'(x) = x [3(x-4)^{2}] + (x-4)^{3} = (x-4)^{2}(4x-4)$$

$$f''(x) = 4(x-1)[2(x-4)] + 4(x-4)^2 = 4(x-4)[2(x-1) + (x-4)] = 4(x-4)[x-4] = 4(x-4)[x$$

Test interval:	$-\infty < x < 2$	2 < x < 4	4 < <i>x</i> < ∞
Sign of $f''(x)$:	f''(x) > 0	f''(x) < 0	f''(x) > 0
Conclusion:	Concave unward	Concave downward	Concave unward

Points of inflection: (2, -16), (4, 0)

27.
$$f(x) = x\sqrt{x+3}$$

 $f'(x) = x\left(\frac{1}{2}\right)(x+3)^{-1/2} + \sqrt{x+3} = \frac{3(x+2)}{2\sqrt{x+3}}$
 $f''(x) = \frac{6\sqrt{x+3} - 3(x+2)(x+3)^{-1/2}}{4(x+3)}$
 $= \frac{3(x+4)}{4(x+3)^{3/2}}$

f''(x) > 0 on the entire domain of f (except for x = -3, for which f''(x) is undefined). There are no points of inflection.

Concave upward: (-3, ∞)

35.
$$f(x) = 2 \sin x + \sin 2x$$
, $[0, 2\pi]$

$$f'(x) = 2\cos x + 2\cos 2x$$

$$f''(x) = -2\sin x - 4\sin 2x = -2\sin x(1 + 4\cos x)$$

$$f''(x) = 0$$
 when $x = 0, 1.823, \pi, 4.460$.

$31.\ f(x) = \sin\frac{x}{2},$	$[0, 4\pi]$
$f'(x) = \frac{1}{2} \cos\left(\frac{x}{2}\right)$	
$f''(x) = -\frac{1}{4}\sin\left(\frac{x}{2}\right)$	

$$f''(x) = 0$$
 when $x = 0, 2\pi, 4\pi$.

Point of inflection: $(2\pi, 0)$

Test interval:	$0 < x < 2\pi$	$2\pi < x < 4\pi$
Sign of $f''(x)$:	f" < 0	f" > 0
Conclusion:	Concave downward	Concave upward

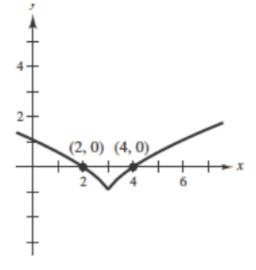
Test interval:	0 < x < 1.823	$1.823 < x < \pi$	$\pi < x < 4.460$	$4.460 < x < 2\pi$
Sign of $f''(x)$:	f'' < 0	f" > 0	f'' < 0	f'' > 0
Conclusion:	Concave downward	Concave upward	Concave downward	Concave upward

Points of inflection: $(1.823, 1.452), (\pi, 0), (4.46, -1.452)$

65.
$$f(2) = f(4) = 0$$

 $f'(x) < 0 \text{ if } x < 3$
 $f'(3) \text{ does not exist.}$
 $f'(x) > 0 \text{ if } x > 3$
 $f''(x) < 0, x \neq 3$

Possible Solution:



67.
$$f(2) = f(4) = 0$$

 $f'(x) > 0 \text{ if } x < 3$
 $f'(3) \text{ does not exist.}$
 $f'(x) < 0 \text{ if } x > 3$
 $f''(x) > 0, x \neq 3$

Possible Solution:

