8.1: Simplifying Expressions with Roots

Square roots have played a key role in our understanding of mathematical systems since they were the door to the first *irrational* numbers discovered by the Greeks in the days of Pythagoras. In this lesson we will introduce the concept of square root, cube root, and n^{th} root expressions and functions.

I. Square Roots

Algebra

Example 1:

Find the length of the side of each square for the given area:

II. Simplifying Square Roots

<u>Example 6</u>: Simplify $\sqrt{x^2}$, then verify by graphing $y = \sqrt{x^2}$

Example 7: Simplify
a)
$$\sqrt{(-3)^2}$$

b) $\sqrt{(x-3)^2}$
c) $\sqrt{36x^8}$

Roots are the inverse of Powers! So, to help us understand roots, let's find some powers. Fill in the table below

n	1	2	3	4	5	6	7	8	9	10	11	12	13
n ²													
<i>n</i> ³													
n ⁴													
n ⁵													

III. Cube Roots

Find the value of *x* that makes the following equations true:

a) $x^3 = 8$ b) $x^3 = -27$

<u>Definition</u>: A cube root of a real number *a* is written as $\sqrt[3]{a}$. If $b^3 = a$, then $\sqrt[3]{a} = b$

<i>Example 10</i> : Find the roots										
a)	³ √1	b)	$\sqrt[3]{8}$	c)	$\sqrt[3]{-8}$	c)	∛-64			

Example 9: Simplify
a)
$$\sqrt[3]{a^3}$$

b) $\sqrt[3]{-125x^3}$

IV. *N*th Roots

We can extend this idea to any positive power.

Definition: The *n*th root of a is written as follows:

$\sqrt[n]{a}$

In general, if $b^n = a$, then $\sqrt[n]{a} = b$. The number *n* is called the *index*.

- If *n* is odd, then the root is an **odd root** which has the same sign as *a*
- If *n* is even, then it is a **principle root** and it must be positive.

Example 10: Find the indicated root.

a)
$$\sqrt[3]{16} =$$

b) $\sqrt[4]{-16} =$
c) $-\sqrt[4]{16} =$

d)
$$\sqrt[5]{-81} =$$

Simplifying *n*th-roots

For any real number *a*:

- **1.** If *n* is even, $\sqrt[n]{a^n} =$
- 2. If *n* is odd, $\sqrt[n]{a^n} =$

Reviewing Power Rules

Since radicals are the opposite of powers, we need to remember some power rules.

$$(a^m)^n = a^{mn}, \qquad (ab)^m = a^m b^n$$

When simplifying a radical,

- 1. First rewrite the radicand as a power equal to the index, then
- 2. Simplify the expression by canceling the power with the root, then
- 3. Positive indices simplifying to Odd powers need Absolute Value.

Example 11:Simplify

a) $\sqrt[4]{16a^4}$

b) $\sqrt[5]{-32x^5}$

c) $\sqrt{49x^4y^6}$

d) $\sqrt[3]{27a^3b^{12}}$