\qquad

10.2
 Graphing Cube Root Functions
 For use with Exploration 10.2

Essential Question What are some of the characteristics of the graph of a cube root function?

1 EXPLORATION: Graphing Cube Root Functions

Work with a partner.

- Make a table of values for each function. Use positive and negative values of x.
- Use the table to sketch the graph of each function.
- Describe the domain of each function.
- Describe the range of each function.
a. $y=\sqrt[3]{x}$
b. $y=\sqrt[3]{x+3}$

\boldsymbol{x}					
\boldsymbol{y}					

\boldsymbol{x}					
\boldsymbol{y}					

\boldsymbol{x}					
\boldsymbol{y}					

\qquad

10.2 Graphing Cube Root Functions (continued)

2 EXPLORATION: Writing Cube Root Functions
Work with a partner. Write a cube root function, $y=f(x)$, that has the given values.
Then use the function to complete the table.
a.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-4	0
-3	
-2	
-1	$\sqrt[3]{3}$
0	

x	$f(x)$
1	
2	
3	
4	2
5	

b.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-4	1
-3	
-2	
-1	$1+\sqrt[3]{3}$
0	

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
1	
2	
3	
4	3
5	

Communicate Your Answer

3. What are some of the characteristics of the graph of a cube root function?
4. Graph each function. Then compare the graph to the graph of $f(x)=\sqrt[3]{x}$.
a. $g(x)=\sqrt[3]{x-1}$

b. $g(x)=\sqrt[3]{x}-1$
c. $g(x)=2 \sqrt[3]{x}$
d. $g(x)=-2 \sqrt[3]{x}$

\qquad
\qquad

Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
cube root function

Core Concepts

Cube Root Functions

A cube root function is a radical function with an index of 3 . The parent function for the family of cube root functions is
$f(x)=\sqrt[3]{x}$. The domain and range of f are

all real numbers.
Notes:
\qquad

10.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-6, graph the function. Compare the graph to the graph of $f(x)=\sqrt[3]{x}$.

1. $h(x)=\sqrt[3]{x-3}$

2. $g(x)=\sqrt[3]{x}+2$

3. $j(x)=4 \sqrt[3]{x}$

4. $r(x)=-\sqrt[3]{x-3}$

5. $s(x)=2 \sqrt[3]{x}-1$

6. $t(x)=\sqrt[3]{-6 x}-2$

\qquad

10.2 Notetaking with Vocabulary (continued)

In Exercises 7-9, describe the transformations from the graph of $f(x)=\sqrt[3]{x}$ to the graph of the given function. Then graph the given function.
7. $p(x)=\sqrt[3]{x-1}+1$
8. $q(x)=-4 \sqrt[3]{x+2}+3$
9. $r(x)=\frac{1}{2} \sqrt[3]{x+1}+4$

10. The graph of cube root function g is shown. Compare the average rate of change of g to the average rate of change of $h(x)=2 \sqrt[3]{x}$ over the interval $x=0$ to $x=8$.

11. The edge length s of a regular tetrahedron is approximately given by $s=\sqrt[3]{8.49 \mathrm{~V}}$, where V is the volume of the tetrahedron. Use a graphing calculator to graph the function. Estimate the volume of a regular tetrahedron with an edge length of 24 inches.

