\qquad

10.1 Graphing Square Root Functions

Essential Question What are some of the characteristics of the graph of a square root function?

1 EXPLORATION: Graphing Square Root Functions

Work with a partner.

- Make a table of values for each function.
- Use the table to sketch the graph of each function.
- Describe the domain of each function.
- Describe the range of each function.
a. $y=\sqrt{x}$
b. $y=\sqrt{x+2}$

\boldsymbol{x}						
\boldsymbol{y}						

\boldsymbol{x}						
\boldsymbol{y}						

\qquad

10.1 Graphing Square Root Functions (continued)

2 EXPLORATION: Writing Square Root Functions

Work with a partner. Write a square root function, $y=f(x)$, that has the given values. Then use the function to complete the table.
a.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-4	0
-3	
-2	
-1	$\sqrt{3}$
0	2
1	

b.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-4	0
-3	
-2	
-1	$1+\sqrt{3}$
0	3
1	

Communicate Your Answer

3. What are some of the characteristics of the graph of a square root function?
4. Graph each function. Then compare the graph to the graph of $f(x)=\sqrt{x}$.
a. $g(x)=\sqrt{x-1}$

b. $g(x)=\sqrt{x}-1$
c. $g(x)=2 \sqrt{x}$
d. $g(x)=-2 \sqrt{x}$

\qquad

10.1 Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term. square root function
radical function

Core Concepts

Square Root Functions

A square root function is a function that contains a square root with the independent variable in the radicand. The parent function for the family of square root functions is $f(x)=\sqrt{x}$. The domain of f is $x \geq 0$, and the range of f is $y \geq 0$.

Notes:

Transformation	$f(x)$ Notation	Examples	
Horizontal Translation Graph shifts left or right.	$f(x-h)$	$\begin{aligned} & g(x)=\sqrt{x-2} \\ & g(x)=\sqrt{x+3} \end{aligned}$	2 units right 3 units left
Vertical Translation Graph shifts up or down.	$f(x)+k$	$\begin{aligned} & g(x)=\sqrt{x}+7 \\ & g(x)=\sqrt{x}-1 \end{aligned}$	7 units up 1 unit down
Reflection Graph flips over x - or y-axis.	$\begin{aligned} & f(-x) \\ & -f(x) \end{aligned}$	$\begin{aligned} & g(x)=\sqrt{-x} \\ & g(x)=-\sqrt{x} \end{aligned}$	in the y-axis in the x-axis
Horizontal Stretch or Shrink Graph stretches away from or shrinks toward y-axis.	$f(a x)$	$\begin{aligned} & g(x)=\sqrt{3 x} \\ & g(x)=\sqrt{\frac{1}{2} x} \end{aligned}$	shrink by a factor of $\frac{\mathbf{1}}{\mathbf{3}}$ stretch by a factor of 2
Vertical Stretch or Shrink Graph stretches away from or shrinks toward x-axis.	$a \bullet f(x)$	$\begin{aligned} & g(x)=4 \sqrt{x} \\ & g(x)=\frac{1}{5} \sqrt{x} \end{aligned}$	stretch by a factor of 4 shrink by a factor of $\frac{\mathbf{1}}{5}$

Notes:

\qquad

10.1 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-3, describe the domain of the function.

1. $y=4 \sqrt{-x}$
2. $y=\sqrt{x-3}$
3. $f(x)=\sqrt{\frac{1}{3} x}+4$

In Exercises 4-6, graph the function. Describe the range.
4. $y=\sqrt{3 x}$

5. $y=2 \sqrt{-x}$

6. $g(x)=\sqrt{x+3}-1$

In Exercises 7-9, graph the function. Compare the graph to the graph of $f(x)=\sqrt{x}$.
7. $r(x)=\sqrt{-\frac{1}{2} x}$
8. $s(x)=-\sqrt{x}-2$
9. $t(x)=\sqrt{x+4}$

\qquad

10.1 Notetaking with Vocabulary (continued)

In Exercises 10-12, describe the transformations from the graph of $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$ to the graph the of \boldsymbol{h}. Then graph \boldsymbol{h}.
10. $h(x)=\frac{1}{2} \sqrt{x+2}-2$
11. $h(x)=2 \sqrt{x-3}+1$
12. $h(x)=-\sqrt{x+4}-4$

13. The model $S(d)=\sqrt{30 d f}$ represents the speed S (in miles per hour) of a car before it skids to a stop, where f is the drag factor of the road surface and d is the length (in feet) of the skid marks. The drag factor of Road Surface C is 0.8 . The graph shows the speed of the car on Road Surface D. Compare the speeds by finding and interpreting their average rates of change over the interval $d=0$ to $d=20$.

