\qquad
9.5

Practice A

Quadratic Formula $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In Exercises 1-3, write the equation in standard form. Then identify the values of a, b, and c that you would use to solve the equation using the Quadratic Formula.

1. $x^{2}=-5 x$
2. $x^{2}+3 x=-10$
3. $-5 x^{2}+2=7 x$

In Exercises 4-11, solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.
4. $x^{2}+6 x+9=0$
5. $x^{2}+5 x+14=0$
6. $x^{2}+9 x-10=0$
7. $3 x^{2}-2 x-1=0$
8. $3 x^{2}-5 x+4=0$
9. $4 x^{2}+4 x+1=0$
11. $-5 x^{2}+9 x=-3$
12. Your friend competes in a high-jump competition at a track meet. The function $h=-16 t^{2}+18 t$ models the height h (in feet) of your friend after t seconds.
a. After how many seconds is your friend at a height of 4 feet?
b. After how many seconds does your friend land on the ground?

In Exercises 13-15, determine the number of real solutions of the equation.
13. $x^{2}+2 x+1=0$
14. $x^{2}-4 x-7=0$
15. $3 x^{2}-2 x=-6$

In Exercises 16-18, find the number of \boldsymbol{x}-intercepts of the graph of the function.
16. $y=-x^{2}+3 x+5$
17. $y=3 x^{2}-7 x+8$
18. $y=5 x^{2}-10 x+1$

In Exercise 19-24, solve the equation using any method. Explain your choice of method.
19. $3 x^{2}=12$
20. $3 x^{2}-7 x+8=0$
21. $x^{2}+8 x=3$
22. $x^{2}=8-x$
23. $x^{2}-14 x+49=0$
24. $4 x^{2}=20 x$
25. Consider the equation $3 x^{2}+5 x+6=0$.
a. Use the discriminant to determine the number of solutions.
b. Change the sign of b in the equation. Write the new equation.
c. Use the discriminant to determine the number of solutions of the new equation. Did your answer change? Explain.

