Applications of Finite Sets

Jeremy Knight Final Oral Exam Texas A&M University March 29th 2012

Finite Fields and Cryptography

A field is a set that

- 1. is <u>associative</u>, <u>commutative</u>, and <u>distributive</u> for *addition* and *multiplication*,
- 2. contains an additive identity element (zero) and multiplicative identity element (unity),
- 3. contains an additive inverse for all elements, and
- 4. contains a multiplicative inverse for all non-zero elements.

Basics of Finite Fields

- A *finite field* is field that has a finite number of elements.
- Order: the number of elements in a field
- The order *must be of the form* p^n for some prime number p and integer n > 1.
- Standard Notation: *GF*(*p*^{*n*}) where the "*GF*" represents "Galois Field" in honor of Evariste Galois.
- In cryptographic systems, it is common to apply the field $GF(2^n)$ and work modulo 2 to work with modern computers.

Constructing $GF(2^m)$

- $\mathbf{Z}_p[X]$: the set of polynomials with coefficients mod p.
- We will typically work with polynomials in $\mathbb{Z}_2[X]$ which we often represent it in binary notation.
- For example, X⁸ + X⁴ + X³ + X + 1 → 100010011 (an important polynomial for the Advanced Encryption Standard (AES).)
- The binary digits $b_8b_7b_6b_5b_4b_3b_2b_1b_0$ are the coefficients of $b_8X^8 + \cdots + b_1X^1 + b_0$.

Arithmetic of $GF(2^m)$

Addition and Subtraction

- Addition is the XOR operation, denoted with the symbol \oplus modulo 2.
- $1 \oplus 1 = 0$, $1 \oplus 0 = 1$, $0 \oplus 0 = 0$
- <u>Example</u> : Add $(X^8 + X^4 + X^3 + X + 1) + (X^8 + X^7 + X^3 + 1)$ as a polynomial and in binary notation. $(X^8 + X^4 + X^3 + X + 1) + (X^8 + X^7 + X^3 + 1)$ $= X^7 + X^4 + X$

Note: the X^8 , X^3 , and 1 terms have vanished since the coefficients are $2 \equiv 0 \pmod{2}$.

Arithmetic of $GF(2^m)$ • <u>Example (cont.)</u> In binary notation this sum is {100011011} \oplus {110001001} = {010010010}. • Note: subtraction of polynomials in $Z_2[X]$ is equivalent to addition since $-1 \equiv 1 \pmod{2}$ $a - b \equiv a + (-1)b \equiv a + b \pmod{2}$ for all $a, b \equiv 0$ or $1 \pmod{2}$.

Arithmetic of $GF(2^m)$

Multiplication

- Multiplication of polynomials in *Z*₂[*X*] is done in the normal manner applying distribution.
- Some powers of *X* will vanish in mod 2.

• Example Compute
$$(X^2 + X + 1)(X + 1)$$
 as a
polynomial and in binary notation.
 $(X^2 + X + 1)(X + 1)$
 $= (X^3 + X^2 + X) + (X^2 + X + 1)$
 $= X^3 + 1$

Arithmetic of $GF(2^m)$

Multiplication

 $\begin{array}{l} \underline{Example} \mbox{ Compute the product of the 8-bit binary} \\ numbers {10011011} \cdot {00100101} \\ & {10011011} \cdot {00100000} \\ \oplus {10011011} \cdot {00000000} \\ \oplus {10011011} \cdot {00000001} \\ & \oplus {1001101100000} \\ \oplus {0001001101100} \\ \oplus {00000100110110} \\ & \oplus {1000110010111} \\ & = {1000110010111} \end{array}$

Arithmetic of $GF(2^m)$

Division

- Method 1: long division in $Z_2[X]$.
- <u>Example</u> Use long division to divide $X^4 + 1$ by $X^2 + X + 1$

$$\begin{array}{r} X^{2} + X + 1 \\ X^{2} + X + 1 \end{array} \xrightarrow{X^{2} + X} \begin{array}{r} Y + 1 \\ \hline X^{4} + X^{3} + X^{2} \\ \hline X^{3} + X^{2} + 1 \\ \hline X^{3} + X^{2} + X \\ \hline X + 1 \end{array}$$

Arithmetic of $GF(2^m)$ Division $X^4 + 1 = (X^2 + X)(X^2 + X + 1) + (X + 1)$ or $X^4 + 1 \equiv X + 1 \pmod{X^2 + X + 1}$ • Method 2: Binary Division • <u>Example</u> Use binary notation to divide $X^4 + 1$ by $X^2 + X + 1$

Arithmetic of $GF(2^m)$

MATLAB Algorithms.

- binxor.m : Binary addition is performed in one line in c=dec2bin(bitxor(bin2dec(a),bin2dec(b)));
- binmult.m: Binary multiplication applying a bitshift and distribution.
- bindiv.m: Binary division
- bin2poly.m:
- Converts a binary number to a polynomial.

Irreducible Polynomials

- For small values of *n* we can check all products of polynomials in $Z_{n-1}[X]$ to find a polynomial that is irreducible.
- Consider the nonzero elements of $GF(2^3)$ X^2 , $X^2 + X$, $X^2 + 1$, $X^2 + X + 1$, X, X + 1, 1

Irreducible Polynomials

- Irreducible polynomial: $P(X) \in \mathbb{Z}_p[X]$ that does not factor into polynomials of lower degree mod 2.
- Used to construct a finite field with p^n elements for prime p and integer $n \ge 1$ by working modulo P(X) for irreducible P(X).
- Consider the possible 2^{nd} degree polynomials in $\mathbb{Z}_2[X]$.
- X^2 , $X^2 + 1$, $X^2 + X$, $X^2 + X + 1$ • Three of these can be factored into polynomials in **7** [X] or

$$\begin{array}{c} \mathbf{z}_{2}[X] \text{ as } \\ X \cdot X = X^{2} \\ X \cdot (X+1) = X^{2} + X \\ (X+1) \cdot (X+1) = X^{2} + 1 \end{array}$$

• $X^2 + X + 1$ is irreducible.

Irreducible Polynomials

• We will check all products that produce a polynomial of degree 3. $X^{2}(X) = X^{3}$ $X^{2}(X + 1) = X^{3} + X$ $(X^{2} + X)(X) = X^{3} + X^{2}$ $(X^{2} + X)(X + 1) = X^{3} + X^{2} + X^{2} + X = X^{3} + X$ $(X^{2} + 1)(X) = X^{3} + X$ $(X^{2} + 1)(X + 1) = X^{3} + X^{2} + X + 1$ $(X^{2} + X + 1)(X) = X^{3} + X^{2} + X$ $(X^{2} + X + 1)(X + 1) = X^{3} + X^{2} + X + X^{2} + X + 1$ $= X^{3} + 1$

Irreducible Polynomials

• We observe that the only $Z_2[X]$ polynomials of degree 3 that are not produced above are $f(X) = X^3 + X^2 + 1$, and

$$f(X) = X^3 + X + 1.$$

• Thus, these are irreducible polynomials in $GF(2^3)$

Multiplicative Inverse

- When working with $GF(2^m)$ modulo an irreducible polynomial, all polynomials have a multiplicative inverse.
- For $a(X) \in GF(2^m)$ and irreducible polynomial $m(X) \in GF(2^m)$ by the Chinese Remainder Theorem there exists polynomials $b(X), c(X) \in GF(2^m)$ such that a(X)b(X) + m(X)c(X) = 1

$$a(X)b(X) \equiv 1 \pmod{m(X)}$$

$$\Rightarrow a^{-1}(X) = b(X) \pmod{m(X)}$$

Multiplicative Inverse

- We can now solve this equation with the Extended Euclidean Algorithm
- Consider $GF(2^3) = Z_2[X] \pmod{X^3 + X + 1}$ • <u>Example</u> Find the inverse of $a(X) = X^2 + X + 1$ in $GF(2^3)$. Step 1: Euclidean Algorithm: $X^3 + X + 1 = (X + 1)(X^2 + X + 1) + (X)$ $X^2 + X + 1 = (X + 1)(X) + 1$ The last remainder is 1, which tells us that the greatest common divisor is 1
 - (cf. $X^3 + X + 1$ is irreducible.)

$GF(2^m)$ and Rijndael

Basics of Rijndael (AES)

- In 2002, the National Institute of Standards and Technology (NIST) adopted the Advanced Encryption Standard (AES) also known as Rijndael.
- Currently the standard encryption algorithm that is designed to be used by Federal departments and agencies have information that requires encryption [NIST].
- Algorithm accepts a 128 bit sequence of plaintext information and cycles through four layers to produce the ciphertext which is also a 128 bit sequence of data.

GF(2^m) and *Rijndael*The first step in the Rijndael algorithm is to group the 128 bit input into 16 bytes of 8 bits and arrange them into a 4 × 4 array of bytes.

Input bytes	State Array	Output bytes
$ \begin{pmatrix} in_1 & in_5 & in_9 & in_{13} \\ in_2 & in_6 & in_{10} & in_{14} \\ in_3 & in_7 & in_{11} & in_{15} \\ in_4 & in_8 & in_{12} & in_{16} \end{pmatrix} $	$\Rightarrow \begin{pmatrix} s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \\ s_4 & s_8 & s_{12} & s_{16} \end{pmatrix} \Rightarrow$	$ \begin{pmatrix} out_1 & out_5 & out_9 & out_{13} \\ out_2 & out_6 & out_{10} & out_{14} \\ out_3 & out_7 & out_{11} & out_{15} \\ out_4 & out_8 & out_{12} & out_{16} \end{pmatrix} $
• Input array is	then manipulat	ed by the 4-laver

• Input array is then manipulated by the 4-layer algorithm in 10, 12, or 14 rounds for key lengths of 128, 192, or 256 bits.

							s	-Box	Value	s							
S(1									-	s							6
	0	60	1	2	3	4	5 6b	0	/	0	9	a 67	oh	fo	de	e	1
	1	03	/C 82	// c0	70 7d	12 fa	50	47	fo	30 9d	da	92	20 of	10	u7 9.4	aD 72	/0
	2	h7	fd	02	26	26	39 2f	4/ f7	cc	24	35	65	fi	-9C	d8	21	15
	2	04	67	22	C2	18	96	-/	03	07	12	-0	62	eh	27	h2	-3
	4	09	83	20	18	1b	6e	53	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	dı	00	ed	20	fc	b1	5b	6a	cb	be	39	48	40	58	cf
	6	do	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	be	b6	da	21	10	ff	f3	d2
R	8	cd	oc	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	28	90	88	46	ee	b8	14	de	5e	ob	db
	а	eo	32	3a	oa	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	с	ba	78	25	2e	1C	аб	b4	сб	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	oe	61	35	57	b9	86	c1	1d	9e
	е	eı	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	a1	89	od	bf	e6	42	68	41	99	2d	of	bo	54	bb	16

ShiftRow (SR)

• The ShiftRow (SR) layer offsets the bytes cyclically by 0, 1, 2, and 3 columns in rows 1, 2, 3, and 4 respectively.

1	S0,0	S0,1	S0,2	S0,3	/S0,0	S _{0,1}	S _{0,2}	S0,3
1	S1,0	S1,1	S1,2	S1,3	S1,1	S _{1,2}	S1,3	S1,0
	S2,0	S2,1	S2,2	S2,3	S2,2	S2,3	S2,0	S2,1
/	S3,0	\$3,1	S3,2	S3,3 /	\$3,3	S3,0	S3,1	S3,2/

AddRoundKey (ARK)

- XOR the shift matrix with the round key matrix as defined by the key schedule which is again defined by operations in $GF(2^8)$.
- The Rijndael system is designed to work with a key of 128, 192, or 256. (We'll use a 128-bit key)

Key Schedule

- 1. Arrange the 128-bit key into a 4×4 matrix of bytes
- 2. Add 40 columns to the matrix as follows:

AddRoundKey (ARK)

Key Schedule (cont.)

a) Designate the first 4 columns W(0), W(1), W(2), W(3)b) For successive columns *i*, If $i > 0 \mod 4$, then $W(i) = W(i - 4) \bigoplus W(i - 1)$ If $i \equiv 0 \mod 4$, then $W(i) = W(i - 4) \bigoplus T(W(i - 1))$ T(W):Shift elements cyclically in column W(i - 1), Replace bytes with S-box values, compute $r(i) = 00000010^{(i-4)/4}$, and T(W) = (e + r(i), f, g, h)

Encryption/Decryption

Rijndael Encryption Summary

- For the 128-bit key, we encryption includes
- 1. ARK with the oth round key,
- 2. Nine rounds of BS, SR, MC, and ARK,
- using keys 1 to 9, and 3. Tenth round of BS, SR, and ARK using the 10th key.

Rijndael Decryption Summary

Each encryption layer is invertible! The reverse algorithm is:

- 1. ARK with 10th round key,
- 2. Nine rounds of IBS, ISR, IMC, IARK using keys 9 to 1
- 3. Tenth round of IBS, ISR, and ARK using the 10th key.

Decryption Layers

Inverse ByteSub (IBS)

- Apply the inverse affine transformation to each byte in the shift array and find the multiplicative inverse of the result in $GF(2^8)$.
- Again... we can use another look-up table.

Inverse ShiftRow (ISR)

- Shift rows to the right instead of the left by 0, 1, 2, and 3 entries, respectively
- Resulting in the byte-wise formula:

 $s'_{r,(c+shift(r,4)) \mod 4} = s_{r,c}$

Decryption Layers

Inverse MixColumn (IMC)

- Treat each column as a 4^{th} –degree polynomial modulo $X^4 + 1$ in $GF(2^8)$.
- Compute the matrix product below column-bycolumn

$$\begin{pmatrix} a_0 & a_3 & a_2 & a_1 \\ a_1 & a_0 & a_3 & a_2 \\ a_2 & a_1 & a_0 & a_3 \\ a_3 & a_2 & a_1 & a_0 \end{pmatrix} \begin{pmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

Where a_i entries are coefficients of $a^{-1}(X) = \{1011\}X^3 + \{1101\}X^2 + \{1001\}X + \{1110\} \pmod{X^4 + 1}$

Error Correction Codes

- Mistakes happen! When transmitting a cryptographic ciphertext, the corruption of even one bit can make a plaintext message unreadable.
- Digital data is susceptible to errors from bit reversal due to "noise".
- Error correction codes can identify a bit or bits that have been altered so they can be returned to their original state.

Hamming Codes

- Finite fields are the key to many useful Error correction codes.
- Types of Hamming Codes: Linear and Cyclic
- [*n*, *k*] block code: encodes a *k*-bit information word to an *n*-bit codeword.
- Step 1: multiply the *k*-bit information word by <u>generating</u> matrix.
- Step 2: (after transmision) multiply the *n*-bit codeword by <u>parity check</u> matrix.

Linear Codes

- We will work with *GF*(2³) to create a hamming matrix. [RT1]
- We first need a primitive polynomial: monic irreducible polynomial whose roots are primitive elements.
- We found irreducible polynomial $P(X) = X^3 + X^2 + 1$
- Is it Primitive in $GF(2^3)$? Let's Check
- If *a* is a root, then
 - $P(a) = a^3 + a^2 + 1 = 0 \implies a^3 = a^2 + 1$

Lillet	I Coues		
$a^{0} = a^{0}$	= 1		= 001 = 1
$a^1 = a^0 \times a$	= 1 × a	= a	= 010 = 2
$a^2 = a^1 \times a$	$= a \times a$	$=a^2$	= 100 = 4
$a^3 = a^2 + 1$	$=a^{2}+1$	$=a^{2}+1$	= 101 = 5
$a^4 = a^3 \times a$	$= (a^2 + 1) \times a$	$= a^3 + a$ $= a^2 + a + 1$	= 111 = 7
$a^5 = a^4 \times a$	$= (a^2 + a + 1) \times a$	$= a^{3} + a^{2} + a$ = $a^{2} + 1 + a^{2} + a$ = $a + 1$	= 011 = 3
$a^6 = a^5 \times a$	$= (a + 1) \times a$	$=a^2+a$	= 110 = 6
$a^7 = a^6 \times a$	$=(a^2+a)\times a$	$= a^3 + a^2 = a^2 + 1 + a^2 = 1$	= 001 = 1

				-				
Generating	g M	atı	rix		100			
 Using the th generating r 	leore natri	m [x is	TW :] st	ateo	l pr	eviously, th	e
0 0	/1	0	0	0	1	1	0\	
<i>C</i> –	0	1	0	0	0	1	1	
u –	0	0	1	0	1	1	1	
	$\setminus 0$	0	0	1	1	0	1/	
• <u>Example</u> S	uppo	ose	we	beg	in v	vith	a plaintext	
word, $p = 1$	010,	We	wil	l en	cod	le it	with G, alte	er
one bit, ther	ı use	the	e pa	rity	che	eck 1	matrix H to	
identify the	erro	r.	•	2				

Hamming Example	
Example (cont)	
<u>Step 1.</u> Compute code word $c = pG$	
$/1 \ 0 \ 0 \ 1 \ 1 \ 0$	\
$a = mC = (1 \ 0 \ 1 \ 0) \left(\begin{array}{c} 0 \ 1 \ 0 \ 0 \ 1 \ \end{array} \right) \left(\begin{array}{c} 0 \ 1 \ 0 \ 0 \ 1 \ \end{array} \right)$	
$c = p c = (1 \ 0 \ 1 \ 0) (0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1)$	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	/
$= (1 \ 0 \ 1 \ 0 \ 0 \ 1)$	
Observe: codeword contains the plaintext word	f
followed by three check bits 001.	
• Now we will alter the 4 th bit	
(to simulate an error):	
$c' = (1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1)$	

Finite Elements and P.D.E.s

- The applications of Partial Differential Equations (PDEs) are
- Many analytic techniques are available for solving linear PDEs in standard forms:
- Wave equation:

$$-a^2 u_{xx} + u_{tt} + cu = F(x, t), \qquad k > 0$$

• Poisson/Laplace equation:

$$a^2 u_{xx} + u_{tt} + cu = g(x, t), \qquad a > 0$$

- Heat equation:
 - $-ku_{xx} + u_t + cu = h(x,t), \qquad a > 0$

Finite Element Method

- A given region is divided into a finite number of geometric sub-regions, called the finite elements.
- Use a set of basis functions from a chosen function space to extrapolate the values of the solution for each finite element using initial values and boundary values

Finite Element Method

The key steps:

- Define our finite element space V_h and the nature and parameters of the functions v in V_h .
- Compute the local stiffness matrix and the coefficients of the local basis functions.
- Compute the values of the global nodes and map the local nodes to global nodes.
- Compute the global stiffness matrix, *S*, (coefficients of the system which we need to solve.)
- Compute the values of the vector $b = (b_i)$, where $b_i = \int_\Omega f(x, y)\phi_i(x, y)dx$
- Finally, we will solve the matrix equation $Sx = \mathbf{b}$.

FEM and Poisson's Equation

Let's consider the Poisson problem: $-\Delta u = f \quad in \quad \Omega, \qquad \Omega = [0,1]^2$ $u = 0 \quad on \quad \partial \Omega$

We will implement FEM with MATLAB algorithms.

• <u>http://knightmath.com/tamu/poisson/</u>

<u>2^k Factorial Design</u> Experiments are an important tool for all areas of science and engineering. We must carefully consider the *design* of the experiment. Often a result is affected by multiple factors. It is useful to perform a *factorial experiment*, which is performed at all factor levels.

2^k Factorial Design

- With k factors that can be controlled, we can use a 2^k factorial design.
- Analyze the effects of the individual factors as well as the joint effect of the factors on the response.
- Quantitative *or* qualitative responses studied at <u>only two levels</u> for each factor.
- Called a 2^k factorial design since the experiment requires 2^k observations. [MR]

2^k Factorial Design

- 2^2 factorial design \Rightarrow two factors (A and B)
- Observe these factors at two levels, low(-) and high(+),
- Requires $2^2 = 4$ observations as shown in the geometric model

Treat

ment

(1)

b

в

- (1), *a*, *b*, and *ab* represent the total of all *n* observations taken at these levels.
- Design addresses all possible factors and interactions.

2^k Factorial Design

- In a 2^{*k*} factorial design, the combinations of the (+) and (-) symbols mirror the binary representation of the polynomials in *GF*(2^{*k*}).
- Testing of each of the factors at many levels is often unnecessary.
- The factorial model gives us a good picture of which factors are significant by testing them at only two levels each.

Clinical Samples

Example:

An article in *Analytica Chimica Acta* examined four parameters that affect the sensitivity and detection of the analytical instruments used to measure clinical samples. They optimized the sensor function using EBC samples spiked with acetone, a known clinical biomarker in breath. The following table shows the results for a single replicate of a 2⁴ factorial experiment for one of the outputs, the average amplitude of acetone peak over three repetitions.

Clinico						
Configuration	А	в		D	Yield	A: RE voltage of the
1	+	+	+	+	0.12	DMS Sensor (1200 or
2	+	+	+	-	0.1193	1400V)
3	+	+	-	+	0.1196	D. Niterran annian
4	+	+	-	-	0.1192	b: Nitrogen carrier
5	+	-	+	+	0.1186	gas now rate (250 or 500)
6	+	-	+	-	0.1188	
7	+	-	-	+	0.1191	C: Solid phase
8	+	-	-	-	0.1186	microextraction filter
9	-	+	+	+	0.121	type (polyacrylate or PDMS-DVB)
10	-	+	+	-	0.1195	
11	-	+	-	+	0.1196	D: GC cooling profile
12	-	+	-	-	0.1191	(cryogenic and
13	-	-	+	+	0.1192	noncryogenic)
14	-	-	+	-	0.1194	
15	-	-	-	+	0.1188	
16	-	-	-	-	0.1188	

Clinical Samples

Data: A 2⁴ factorial experiment on clinical samples
Objective: Factor analysis and interaction of factor using an effects model
Hypotheses: We consider the null hypotheses below with a confidence level of 95%.
Main Effects - H₀: (α)_i = 0
2-way Interaction Effects - H₀: (αβ)_{ij} = 0
3-way Interaction Effects - H₀: (αβγ)_{ijk} = 0
(We will ignore 4-way interactions since they are highly unlikely to be significant.)

Clinical Samples

• To analyze the fit of the effects model, we look at the ANOVA table and see that the *p*-value for the model fit is .0628 which is too high.

Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	14	5.435e-6	3.8821e-7	155.2857		
Error	1	2.5e-9	2.5e-9	Prob > F		
C. Total	15	5.4375e-6		0.0628		
RSquare		0.9995	4			
RSquare			0.99954			
RSquare A	dj		0.993103			
Root Mean	Square	Error	0.0000	0.00005		
Mean of Re	sponse		0.11928	0.119288		
Observatio	ne (or Si	16				

Clinical Samples

• Since A is not a main effect, we will remove this factor and recalculate the model. When we do this, we get a *p*-value of .0150. This is an acceptable value for our goodness of fit.

Source	DF	Sum of Squares	Mean Square	F Ratio			
Model	7	4.4875e-6	6.4107e-7	5.3985			
Error	8	0.0000095	1.1875e-7	Prob > F			
C. Total	15	5.4375e-6		0.0150*			
RSquare			0.82528	37			
RSquare			0.82528	0.825287			
RSquare A	미	-	0.672414				
Root Mean	Square	Error	0.000345				
Mean of Re	sponse	0.11928	0.119288				
Observatio	ns (or Si	16					

Conclusion

- Many real-life applications of mathematics require continuousness and infinite considerations.
- However, considering finite sets can prove quite effective in understanding and controlling results.
- In all situations, finite sets must be designed with much care and forethought to produce useful results.
- If this is done, we can *begin* to understand the infinite from our finite perspective.

