
3/29/2012

1

Applications of Finite Sets
Jeremy Knight
Final Oral Exam
Texas A&M University
March 29th 2012

Finite Fields and Cryptography

A field is a set that
1. is associative, commutative, and distributive for

addition and multiplication,
2. contains an additive identity element (zero) and

multiplicative identity element (unity),
3. contains an additive inverse for all elements, and
4. contains a multiplicative inverse for all non-zero

elements.

• A finite field is field that has a finite number of
elements.

• Order: the number of elements in a field

• The order must be of the form -. for some prime
number - and integer / > 1.

• Standard	Notation: 	34(-.)	where the "34"
represents “Galois Field” in honor of Evariste
Galois.

• In cryptographic systems, it is common to apply
the field 34(2.)	and work modulo 2 to work
with modern computers.

Basics of Finite Fields

• 56 7 : the set of polynomials with coefficients

mod -.
• We will typically work with polynomials in 58[7]
which we often represent it in binary notation.

• For example,
X< + X> + X? + X + 1 → 100010011

(an important polynomial for the Advanced
Encryption Standard (AES).)

• The binary digits A<ABACADA>A?A8AEAF are the
coefficients of A<7

< +⋯+ AE7
E + AF.

Constructing HI(JK)

Addition and Subtraction

• Addition is the XOR operation, denoted with the
symbol ⊕	modulo 2.

• 1⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0
• Example : Add

7< + 7> + 7? + 7 + 1 + 7< + 7B + 7? + 1
as a polynomial and in binary notation.
7< + 7> + 7? + 7 + 1 + 7< + 7B + 7? + 1

= 7B + 7> + 7
Note: the 7<, 7?, and1 terms have vanished since
the coefficients are 2 ≡ 0	(mod2).

Arithmetic of HI(JK)

• Example (cont.)

In binary notation this sum is
100011011 ⊕ 110001001 = 010010010 .

• Note: subtraction of polynomials in O8[7] is
equivalent to addition since −1 ≡ 1	(mod	2)

Q − A ≡ Q + −1 A ≡ Q + A	 mod	2
for all Q, A ≡ 0	RS	1	(mod	2).

Arithmetic of HI(JK)

3/29/2012

2

Multiplication

• Multiplication of polynomials in O8[7] is done in
the normal manner applying distribution.

• Some powers of 7 will vanish in mod 2.

• Example Compute 78 + 7 + 1 7 + 1 as a
polynomial and in binary notation.

78 + 7 + 1 7 + 1
= 7? + 78 + 7 + 78 + 7 + 1

= 7? + 1

Arithmetic of HI(JK)

MultiplicationMultiplicationMultiplicationMultiplication
Example (cont.)
In binary notation:

0111 ⋅ 0011
= 0111 ⋅ 0010 ⊕ 0111 ⋅ {0001}
= 1110 ⊕ 0111 = 1001

• Note: multiplying {0111} by {0010} shifts all the
bits to the left on place and adds a 0 to the right.

• Hence, binary multiplication is simply a series of
“bit shifts” and XOR operations.

Arithmetic of HI(JK)

MultiplicationMultiplicationMultiplicationMultiplication
Example Compute the product of the 8-bit binary
numbers 10011011 ⋅ {00100101}

10011011 ⋅ 00100101
= 10011011 ⋅ 00100000
⊕ 10011011 ⋅ 00000100
⊕ 10011011 ⋅ 00000001

= 1001101100000
⊕ 0001001101100
⊕ 0000010011011
= {1000110010111}

Arithmetic of HI(JK)
Division

• Method 1: long division in O8[7].
• Example Use long division to divide 7> + 1 by

78 + 7 + 1

78 + 7 + 1) 7> + 1
 7 > + 7? + 78

 7? + 78 + 1
 7? + 78 + 7

 7 + 1

Arithmetic of HI(JK)

 78 +7 S. 7 + 1

DivisionDivisionDivisionDivision
7> + 1 = 78 + 7 78 + 7 + 1 + 7 + 1

RS
7> + 1 ≡ 7 + 1 mod 78 + 7 + 1

• Method 2: Binary Division
• Example Use binary notation to divide 7> + 1 by

78 + 7 + 1

Arithmetic of HI(JK)
DivisionDivisionDivisionDivision
• Example Use binary notation to divide 7> + 1 by

78 + 7 + 1
10001

111 = 11100 ⊕ 1101
111

= 100 ⊕ 1101
111

= 100 ⊕ 1110 ⊕ 11
111

= 100 ⊕ 10 ⊕ 11
111

= 110 ⊕ 11
111

or 78 + 7 + ^_E
^`_^_E

Arithmetic of HI(JK)

3/29/2012

3

MATLAB Algorithms.

• binxor.m :
Binary addition is performed in one line in
c=dec2bin(bitxor(bin2dec(a),bin2dec(b)));

• binmult.m:
Binary multiplication applying a bitshift and
distribution.

• bindiv.m:
Binary division

• bin2poly.m:
Converts a binary number to a polynomial.

Arithmetic of HI(JK)

• For small values of / we can check all products
of polynomials in O.aE[7] to find a polynomial
that is irreducible.

• Consider the nonzero elements of 34(2?)
	78, 78 + 7, 78 + 1, 78 + 7 + 1,		

7, 7 + 1, 1

Irreducible Polynomials

• Irreducible polynomial:
b 7 ∈ 56[7] that does not factor into polynomials
of lower degree mod 2.

• Used	to	construct	a	finite	field	with	-. elements	for	
prime	- and	integer	/ ≥ 1 by	working	modulo	b(7)
for	irreducible	b(7).

• Consider the possible 2nd degree polynomials in
58[7].

78, 78 + 1, 78 + 7, 78 + 7 + 1
• Three of these can be factored into polynomials in
58[7] as

7 ⋅ 7 = 78

7 ⋅ 7 + 1 = 78 +7
7 + 1 ⋅ 7 + 1 = 78 + 1

• 78 + 7 + 1	is	irreducible.

Irreducible Polynomials

• We will check all products that produce a
polynomial of degree 3.

78 7 = 7?

78 7 + 1 = 7? + 7
78 + 7 7 = 7? + 78

78 + 7 7 + 1 = 7? + 78 + 78 + 7 = 7? + 7
78 + 1 7 = 7? + 7
78 + 1 7 + 1 = 7? + 78 + 7 + 1
78 + 7 + 1 7 = 7? + 78 + 7
78 + 7 + 1 7 + 1 = 7? + 78 + 7 + 78 + 7 + 1

= 7? + 1

Irreducible Polynomials

• We observe that the only O8[7] polynomials of
degree 3 that are not produced above are

g 7 = 7? + 78 + 1, and
g 7 = 7? + 7 + 1.

• Thus, these are irreducible polynomials in
34(2?)

Irreducible Polynomials

• When working with 34(2h)modulo an
irreducible polynomial, all polynomials have a
multiplicative inverse.

• For Q 7 ∈ 34 2h and irreducible polynomial
i 7 ∈ 34(2h) by the Chinese Remainder
Theorem there exists polynomials A 7 , j 7 ∈
34(2h) such that

Q 7 A 7 +i 7 j 7 = 1
or

Q 7 A 7 ≡ 1		 mod	i 7 	
⇒ 	QaE 7 = A 7 		 mod	i 7

Multiplicative Inverse

3/29/2012

4

• We can now solve this equation with the
Extended Euclidean Algorithm

• Consider
34 2? = O8 7 		 mod	7? + 7 + 1

• Example Find the inverse of Q 7 = 78 + 7 + 1
in 34 2? .

Step 1: Euclidean Algorithm:
7? + 7 + 1 = 7 + 1 78 + 7 + 1 + 7
78 + 7 + 1 = 7 + 1 7 + 1

The last remainder is 1, which tells us that the
greatest common divisor is 1

(cf. 7? + 7 + 1	is irreducible.)

Multiplicative Inverse

• Example (cont.)

Step 2: Work backwards to write 1 as linear
combination of the two polynomials.

7? + 7 + 1 = 7 + 1 78 + 7 + 1 + 7 			⇒ 		l = lm + l +n + l + n lJ + l + n

78 + 7 + 1 = 7 + 1 7 + 1			 ⇒ 				n = (lJ + l + n) + l + n l

1 = 78 + 7 + 1 + 7 + 1 7
= 78 + 7 + 1 + 7 + 1 7? + 7 + 1 + 7 + 1 78 + 7 + 1

= 1 + 7 + 1 8 78 + 7 + 1 + 7 + 1 7? + 7 + 1
= 78 78 + 7 + 1 + 7 + 1 7? + 7 + 1

Hence,

78 78 + 7 + 1 ≡ 1		 mod	7? + 7 + 1
And

QaE 7 ≡ 78	 mod	7? + 7 + 1

Multiplicative Inverse

Basics	of		Basics	of		Basics	of		Basics	of		RijndaelRijndaelRijndaelRijndael (AES)(AES)(AES)(AES)
• In	2002,	the	National	Institute	of	Standards	and	
Technology	(NIST)	adopted	the	Advanced	
Encryption	Standard	(AES)	also	known	as	
Rijndael.		

• Currently	the	standard	encryption	algorithm	that	
is	designed	to	be	used	by	Federal	departments	and	
agencies	have	information	that	requires	
encryption	[NIST].		

• Algorithm	accepts	a	128	bit	sequence	of	plaintext	
information	and	cycles	through	four	layers	to	
produce	the	ciphertext which	is	also	a	128	bit	
sequence	of	data.

HI(JK) and Rijndael

• The first step in the Rijndael algorithm is to
group the 128 bit input into 16 bytes of 8 bits
and arrange them into a 4 t 4 array	of	bytes.

• Input array is then manipulated by the 4-layer
algorithm in 10, 12, or 14 rounds for key lengths
of 128, 192, or 256 bits.

HI(JK) and Rijndael

• A	non-linear	byte	substitution	routine	that	
operates	on	each	byte	with	bits	{AF, AE… , AB} using	
the	affine	transformation

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⋅

AF
AE
A8
A?
A>
AD
AC

+

1
1
0
0
0
1
1
0

=

A′F
A′E
A′8
A′?
A′>
A′D
A′C

.

• To simplify matters, we can compute this
transformation on all possible bytes in 34(2<)
place them in a look up table called an S-box.

ByteSub (BS)
S-Box Values

S(rs)
s

0 1 2 3 4 5 6 7 8 9 a b c d e f

R

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

ByteSub (BS)

Consider {10011011} and use the first four digits 1001 = {9} which tell us to look
in row 9, and the second four digits 1011 = {b} which gives us column b.

10011011 = 9b → 81 = 10000001 .

S-box in hexadecimal format [NIST]

3/29/2012

5

• The ShiftRow (SR) layer offsets the bytes
cyclically by 0, 1, 2, and 3 columns in rows 1, 2,
3, and 4 respectively.

ShiftRow (SR)

• In the MixColumn layer, each column becomes a
4-term polynomial in 34(2<) such as

w x = wmlm + wJlJ + wnl + wy
where AF, AE, A8, and A? are bytes from the
column of the shift matrix

• Multiply this polynomial modulo (7> + 1) by
z l = yynn lm + yyyn lJ + yyyn l + yyny

• Note: 7> + 1 is not irreducible, so an inverse is
not guaranteed, but Q({) does have an inverse:

zan l = nynn lm + nnyn lJ + nyyn l + {nnny} (|}~ l� + n)

MixColumns (MC)

• This gives us
�F = QF ⋅ AF ⊕ Q? ⋅ AE ⊕ Q8 ⋅ A8 ⊕ QE ⋅ A?�E = QE ⋅ AF ⊕ QF ⋅ AE ⊕ Q? ⋅ A8 ⊕ Q8 ⋅ A?�8 = Q8 ⋅ AF ⊕ QE ⋅ AE ⊕ QF ⋅ A8 ⊕ Q? ⋅ A?�? = Q? ⋅ AF ⊕ Q8 ⋅ AE ⊕ QE ⋅ A8 ⊕ QF ⋅ A?

• In Matrix form
QF Q? Q8 QE
QE QF Q? Q8
Q8 QE QF Q?
Q? Q8 QE QF

AF
AE
A8
A?

=
�F
�E
�8
�?

This matrix sufficiently defines the MixColumn
transformation when applied to each column

AF, AE, A8, A? � of the shift matrix

MixColumns (MC)

• Let’s analyze this product Q 7 A(7) with

Q 7 = � Q�7�
?

��F
, A 7 = � A�7�

?

��F
• We note that when working mod 7> + 1 :

7� ≡ 7� ���> mod 7> + 1
• Multiplying and collecting like terms, we get

j 7 = Q 7 ⋅ A 7 = � j.7.
C

.��_��F
= � �.7.

? ��� >

.��_��F��� >
Where

�. = � Q� ⋅ A�
?��� >

�_��F ��� >

MixColumns (MC)

• XOR the shift matrix with the round key matrix as
defined by the key schedule which is again defined
by operations in 34(2<).

• The Rijndael system is designed to work with a
key of 128, 192, or 256. (We’ll use a 128-bit key)

Key ScheduleKey ScheduleKey ScheduleKey Schedule
1. Arrange the 128-bit key into a 4 × 4 matrix of

bytes

2. Add 40 columns to the matrix as follows:

AddRoundKey (ARK)

Key Schedule (cont.)Key Schedule (cont.)Key Schedule (cont.)Key Schedule (cont.)
a) Designate the first 4 columns

� 0 , � 1 , � 2 , �(3)
b) For successive columns i,

If � > 0 mod 4, then
� � = � � − 4 ⊕ � � − 1

If � ≡ 0 mod 4, then
� � = � � − 4 ⊕ � � � − 1

� � :Shift elements cyclically in column �(� − 1),
Replace bytes with S-box values, compute

S � = 00000010(�a>) >⁄ , and
� � = � + S � , g, �, ℎ

AddRoundKey (ARK)

3/29/2012

6

RijndaelRijndaelRijndaelRijndael Encryption SummaryEncryption SummaryEncryption SummaryEncryption Summary
• For the 128-bit key, we encryption includes
1. ARK with the 0th round key,

2. Nine rounds of BS, SR, MC, and ARK,
using keys 1 to 9, and

3. Tenth round of BS, SR, and ARK using the 10th key.

RijndaelRijndaelRijndaelRijndael Decryption SummaryDecryption SummaryDecryption SummaryDecryption Summary
Each encryption layer is invertible! The reverse algorithm is:
1. ARK with 10th round key,

2. Nine rounds of IBS, ISR, IMC, IARK using keys 9 to 1

3. Tenth round of IBS, ISR, and ARK using the 10th key.

Encryption/Decryption

Inverse Inverse Inverse Inverse ByteSubByteSubByteSubByteSub (IBS)(IBS)(IBS)(IBS)
• Apply the inverse affine transformation to each

byte in the shift array and find the multiplicative
inverse of the result in 34(2<)....

• Again… we can use another look-up table.

Inverse Inverse Inverse Inverse ShiftRowShiftRowShiftRowShiftRow (ISR)(ISR)(ISR)(ISR)
• Shift rows to the right instead of the left by 0, 1,
2, and 3 entries, respectively

• Resulting in the byte-wise formula:
��, �_����� �,> ��� >

� = ��,�

Decryption Layers

Inverse MixColumn (IMC)

• Treat each column as a 4th –degree polynomial
modulo 7> + 1 in 34(2<).

• Compute the matrix product below column-by-
column

QF Q? Q8 QE
QE QF Q? Q8
Q8 QE QF Q?
Q? Q8 QE QF

�F
�E
�8
�?

=
AF
AE
A8
A?

Where Q� entries are coefficients of
zan l = nynn lm + nnyn lJ + nyyn l + {nnny} (|}~ l� + n)

Decryption Layers

• Mistakes happen! When transmitting a
cryptographic ciphertext, the corruption of even
one bit can make a plaintext message
unreadable.

• Digital data is susceptible to errors from bit
reversal due to “noise”.

• Error correction codes can identify a bit or bits
that have been altered so they can be returned to
their original state.

Error Correction Codes

• Finite fields are the key to many useful Error
correction codes.

• Types of Hamming Codes:
Linear and Cyclic

• [/, �] block code: encodes a �-bit information
word to an /-bit codeword.

• Step 1: multiply the �-bit information word by
generating matrix.

• Step 2: (after transmision) multiply the /-bit
codeword by parity check matrix.

Hamming Codes

• We will work with 34(2?) to create a hamming
matrix. [RT1]

• We first need a primitive polynomial:
monic irreducible polynomial whose roots are
primitive elements.

• We found irreducible polynomial
b 7 = 7? + 78 + 1

• Is it Primitive in 34(2?)? Let’s Check
• If Q is a root, then

b Q = Q? + Q8 + 1 = 0 ⇒ Q? = Q8 + 1

Linear Codes

3/29/2012

7

QF = QF = 1 = 001 = 1

QE = QF × Q = 1 × Q = Q = 010 = 2

Q8 = QE × Q = Q × Q = Q8 = 100 = 4

Q? = Q8 + 1 = Q8 + 1 = Q8 + 1 = 101 = 5

Q> = Q? × Q = (Q8 + 1) × Q = Q? + Q
= Q8 + Q + 1

= 111 = 7

QD = Q> × Q = (Q8 + Q + 1) × Q = Q? + Q8 + Q
= Q8 + 1 + Q8 + Q
= Q + 1

= 011 = 3

QC = QD × Q = (Q + 1) × Q = Q8 + Q = 110 = 6

QB = QC × Q = (Q8 + Q) × Q = Q? + Q8 = Q8 + 1 + Q8 = 1 = 001 = 1

Linear Codes

• We see from the power QB = 1 that we have the
cyclic group 34∗(2?) working mod 7? + 78 + 1

• Theorem [TW]: If 3 = [£¤ , b] is the generating
matrix for a code ¥, then ¦ = [−b� , £.a¤] is the
parity check matrix for ¥.

• Constructing the parity check matrix [RT1]:
Compile the remainders in the table into the
matrix

QC QD Q> Q? Q8 QE QF =

¦ =
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

�

Parity Check Matrix

• Using the theorem [TW] stated previously, the
generating matrix is:

3 =
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

• Example Suppose we begin with a plaintext
word, - = 1010, We will encode it with G, alter
one bit, then use the parity check matrix H to
identify the error.

Generating Matrix

Example (cont)	
Step 1. Compute code word j = -3

j = -3 = 1 0 1 0

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

	= 1 0 1 0 0 0 1
• Observe: codeword contains the plaintext word
followed by three check bits 001.

• Now, we will alter the 4th bit
(to simulate an error):

j� = 1 0 1 1 0 0 1

Hamming Example

Example (cont)		
j� = 1 0 1 1 0 0 1

Step 2. Compute the check bit product j�¦

j�¦ = 1 0 1 1 0 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

�

										= 1 0 1

• Note: unaltered codewords produce j¦ = y.
• j�¦ = (1 0 1) is the 4th column of ¦.

• Hence 4th bit was changed.

Hamming Example

Example (cont)		
Step	3: Correct	bit	and	check

j = 1 0 1 0 0 0 1

j¦ = 1 0 1 0 0 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

�

								= (0 0 0)

Hamming Example

3/29/2012

8

Finite Elements and P.D.E.s

• The applications of Partial Differential
Equations (PDEs) are

• Many analytic techniques are available for
solving linear PDEs in standard forms:

• Wave equation:
−Q8§¨¨ + §�� + j§ = 4 {, © , � > 0

• Poisson/Laplace equation:
Q8§¨¨ + §�� + j§ = � {, © , Q > 0

• Heat equation:
−�§¨¨ + §� + j§ = ℎ {, © , Q > 0

• In many applications, the equations become too
complex for known analytical methods.

• In this case, we must use numerical methods of
approximating solutions to PDEs.

• Difference methods-
approximate derivatives by calculating differences
over increasingly small intervals that converge to the
analytical solution

• Other useful methods:
Crank-Nicolson method and Rayleigh-Ritz method

Numerical Methods

• A given region is divided into
a finite number of geometric
sub-regions, called the finite
elements.

• Use a set of basis functions
from a chosen function space
to extrapolate the values of
the solution for each finite
element using initial values
and boundary values

Finite Element Method

The key steps:

• Define our finite element space ª� and the nature
and parameters of the functions v in ª�.

• Compute the local stiffness matrix and the
coefficients of the local basis functions.

• Compute the values of the global nodes and map the
local nodes to global nodes.

• Compute the global stiffness matrix, S,
(coefficients of the system which we need to solve.)

• Compute the values of the vector A = A� , where
A� = « g {, ¬ ­� {, ¬ �{

®

• Finally, we will solve the matrix equation ¯{ = °.

Finite Element Method

Let’s consider the Poisson problem:
−Δ§ = g			�/			Ω, 				Ω = 0,1 8

§ = 0			R/			³Ω

We will implement FEM with MATLAB
algorithms.

• http://knightmath.com/tamu/poisson/

FEM and Poisson’s Equation

2k Factorial Design

• Experiments are an important tool for all areas
of science and engineering.

• We must carefully consider the design of the
experiment.

• Often a result is affected by multiple factors.

• It is useful to perform a factorial experiment,
which is performed at all factor levels.

3/29/2012

9

• With k factors that can be controlled, we can use

a 2¤ factorial design.

• Analyze the effects of the individual factors as
well as the joint effect of the factors on the
response.

• Quantitative or qualitative responses studied at
only two levels for each factor.

• Called a 2¤ factorial design since the experiment

requires 2¤ observations. [MR]

J´ Factorial Design

• 28 factorial design ⇒	two factors
(A and B)

• Observe these factors at two
levels, low(-) and high(+),

• Requires 28 = 4 observations as
shown in the geometric model

• 1 , Q, A, and	QA represent the
total of all n observations taken
at these levels.

• Design addresses all possible
factors and interactions.

J´ Factorial Design

Low
 (-)

A

B

Low

 (-)
High
 (+)

High

 (+) b

(1)

a

ab

Treat

ment A B

(1) - -

a + -

b - +

ab + +

• In	a	2¤ factorial design, the combinations of the
(+) and (-) symbols mirror the binary

representation of the polynomials in 34(2¤).
• Testing of each of the factors at many levels is
often unnecessary.

• The factorial model gives us a good picture of
which factors are significant by testing them at
only two levels each.

J´ Factorial Design

Example:

An article in Analytica Chimica Acta examined
four parameters that affect the sensitivity and
detection of the analytical instruments used to
measure clinical samples. They optimized the
sensor function using EBC samples spiked with
acetone, a known clinical biomarker in breath.
The following table shows the results for a single
replicate of a 2> factorial experiment for one of the
outputs, the average amplitude of acetone peak
over three repetitions.

Clinical Samples

Configuration A B C D Yield

1 + + + + 0.12

2 + + + - 0.1193

3 + + - + 0.1196

4 + + - - 0.1192

5 + - + + 0.1186

6 + - + - 0.1188

7 + - - + 0.1191

8 + - - - 0.1186

9 - + + + 0.121

10 - + + - 0.1195

11 - + - + 0.1196

12 - + - - 0.1191

13 - - + + 0.1192

14 - - + - 0.1194

15 - - - + 0.1188

16 - - - - 0.1188

Clinical Samples

A:	RF	voltage	of	the	
DMS	Sensor	(1200	or	
1400V)
B:	Nitrogen	carrier	
gas	flow	rate	(250	or	
500)

C:	Solid	phase	
microextraction filter	
type	(polyacrylate or	
PDMS-DVB)

D:	GC	cooling	profile	
(cryogenic	and	
noncryogenic)

• Data: A 2> factorial experiment on clinical
samples
Objective: Factor analysis and interaction of
factor using an effects model
Hypotheses: We consider the null hypotheses
below with a confidence level of 95%.

• Main Effects – ¦F: · � = 0
2-way Interaction Effects - ¦F: ·¸ �� = 0
3-way Interaction Effects – ¦F: ·¸¹ ��¤ = 0
(We will ignore 4-way interactions since they are
highly unlikely to be significant.)

Clinical Samples

3/29/2012

10

Clinical Samples

• Significant
main effects:
B, C, and D
(p-value<.05)

• Significant
two-way
interactions:
A*C and B*D.

Clinical Samples

• interaction profile plots show interactions of
A,C and B,D.

• To analyze the fit of the effects model, we look at
the ANOVA table and see that the p-value for the
model fit is .0628 which is too high.

Clinical Samples

• Since A is not a main effect, we will remove this
factor and recalculate the model. When we do
this, we get a p-value of .0150. This is an
acceptable value for our goodness of fit.

Clinical Samples

• Many real-life applications of mathematics
require continuousness and infinite
considerations.

• However, considering finite sets can prove quite
effective in understanding and controlling
results.

• In all situations, finite sets must be designed
with much care and forethought to produce
useful results.

• If this is done, we can begin to understand the
infinite from our finite perspective.

Conclusion
[TW] Trappe, Wade, and Washington, Lawrence C. Introduction to Cryptography with
Code Theory. 2nd Edition. Prentice Hall. 2006.

[MR] Montgomery, Douglas C. and Runger, George C. Applied Statistics and Probability
for Engineers. 5th edition. John Wiley and Sons. 2011.

[RT1] Tervo, Richard. Error Control Codes from Galois Fields. Course notes for EE4253
Digital Communications. University of New Brunswick.
http://www.ee.unb.ca/cgi-bin/tervo/galois.pl

[RT2] Tervo, Richard. The Hamming Code Revisited – A Matrix Approach.Course notes
for EE4253 Digital Communications. University of New Brunswick.
http://www.ee.unb.ca/tervo/ee4253/hamming2.shtml

[NW] Wagner, Niel R., The Laws of Cryptography; The Finite Field 34(2<)
http://www.cs.utsa.edu/~wagner/laws/FFM.html
http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf

[NIST] Specification for the Advanced Encryption Standard (AES). National Institute of
Standards and Technology. November 26, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[HM] Hansen, Tom and Mullen, G.L. Primitive Polynomials Over Finite Fields.
Mathematics of Computation. American Mathematical Society. 1992.
http://www.ams.org/journals/mcom/1992-59-200/S0025-5718-1992-1134730-7/S0025-
5718-1992-1134730-7.pdf

[MK] Kyuregyan, Melsik K. Iterated constructions of irreducible polynomials over finite
fields with linearly independent roots. Science Direct. 2003.
http://web.mit.edu/minilek/Public/irreducible.pdf

