Applications of Finite Sets

Jeremy Knight
Final Oral Exam
Texas A\&M University
March $29^{\text {th }} 2012$

Finite Fields and Cryptography

A field is a set that

1. is associative, commutative, and distributive for addition and multiplication,
2. contains an additive identity element (zero) and multiplicative identity element (unity),
3. contains an additive inverse for all elements, and
4. contains a multiplicative inverse for all non-zero elements.

Basics of Finite Fields

- A finite field is field that has a finite number of elements.
- Order: the number of elements in a field
- The order must be of the form p^{n} for some prime number p and integer $n>1$.
- Standard Notation: $G F\left(p^{n}\right)$ where the " $G F$ " represents "Galois Field" in honor of Evariste Galois.
- In cryptographic systems, it is common to apply the field $G F\left(2^{n}\right)$ and work modulo 2 to work with modern computers.

Constructing $\operatorname{GF}\left(\mathbf{2}^{m}\right)$

- $\boldsymbol{Z}_{p}[X]$: the set of polynomials with coefficients $\bmod p$.
- We will typically work with polynomials in $\boldsymbol{Z}_{2}[X]$ which we often represent it in binary notation.
- For example,

$$
X^{8}+X^{4}+X^{3}+X+1 \rightarrow 100010011
$$

(an important polynomial for the Advanced Encryption Standard (AES).)

- The binary digits $b_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ are the coefficients of $b_{8} X^{8}+\cdots+b_{1} X^{1}+b_{0}$.

Arithmetic of GF($\left.2^{m}\right)$

Addition and Subtraction

- Addition is the XOR operation, denoted with the symbol \oplus modulo 2 .
- $1 \oplus 1=0,1 \oplus 0=1,0 \oplus 0=0$
- Example : Add
$\left(X^{8}+X^{4}+X^{3}+X+1\right)+\left(X^{8}+X^{7}+X^{3}+1\right)$
as a polynomial and in binary notation.

$$
\begin{gathered}
\left(X^{8}+X^{4}+X^{3}+X+1\right)+\left(X^{8}+X^{7}+X^{3}+1\right) \\
=X^{7}+X^{4}+X
\end{gathered}
$$

Note: the X^{8}, X^{3}, and 1 terms have vanished since the coefficients are $2 \equiv 0(\bmod 2)$.

Arithmetic of $\operatorname{GF}\left(\mathbf{2}^{m}\right)$

- Example (cont.)

In binary notation this sum is $\{100011011\} \oplus\{110001001\}=\{010010010\}$.

- Note: subtraction of polynomials in $Z_{2}[X]$ is equivalent to addition since $-1 \equiv 1(\bmod 2)$

$$
a-b \equiv a+(-1) b \equiv a+b(\bmod 2)
$$

for all $a, b \equiv 0$ or $1(\bmod 2)$.

Arithmetic of $\operatorname{GF}\left(\mathbf{2}^{m}\right)$

Multiplication

- Multiplication of polynomials in $Z_{2}[X]$ is done in the normal manner applying distribution.
- Some powers of X will vanish in $\bmod 2$.
- Example Compute $\left(X^{2}+X+1\right)(X+1)$ as a polynomial and in binary notation.

$$
\begin{gathered}
\left(X^{2}+X+1\right)(X+1) \\
=\left(X^{3}+X^{2}+X\right)+\left(X^{2}+X+1\right) \\
=X^{3}+1
\end{gathered}
$$

Arithmetic of $\operatorname{GF}\left(\mathbf{2}^{m}\right)$

Multiplication

Example (cont.)
In binary notation:
$\{0111\} \cdot\{0011\}$

$$
\begin{aligned}
& =\{0111\} \cdot\{0010\} \oplus\{0111\} \cdot\{0001\} \\
& =\{1110\} \oplus\{0111\}=\{1001\}
\end{aligned}
$$

- Note: multiplying $\{0111\}$ by $\{0010\}$ shifts all the bits to the left on place and adds a 0 to the right.
- Hence, binary multiplication is simply a series of "bit shifts" and XOR operations.

Arithmetic of GF($\left.\mathbf{2}^{m}\right)$

Multiplication

Example Compute the product of the 8-bit binary numbers $\{10011011\} \cdot\{00100101\}$
\{10011011\}•\{00100101\}
$=\{10011011\} \cdot\{00100000\}$
$\oplus\{10011011\} \cdot\{00000100\}$
$\oplus\{10011011\} \cdot\{00000001\}$
$=\{1001101100000\}$
$\oplus\{0001001101100\}$
$\oplus\{0000010011011\}$
$=\{1000110010111\}$

Arithmetic of $\operatorname{GF}\left(\mathbf{2}^{m}\right)$

Division

$$
\begin{gathered}
X^{4}+1=\left(X^{2}+X\right)\left(X^{2}+X+1\right)+(X+1) \\
\text { or } \\
X^{4}+1 \equiv X+1\left(\bmod X^{2}+X+1\right)
\end{gathered}
$$

- Method 2: Binary Division
- Example Use binary notation to divide $X^{4}+1$ by $X^{2}+X+1$

Arithmetic of GF($\left.\mathbf{2}^{m}\right)$

Division

- Method 1: long division in $Z_{2}[X]$.
- Example Use long division to divide $X^{4}+1$ by $X^{2}+X+1$

$$
\begin{aligned}
X^{2}+X+1 & \frac{X^{2}+X \quad r \cdot X}{} \begin{array}{l}
X^{4}+1 \\
\\
\\
\\
\\
\\
\\
\\
\\
\quad \frac{X^{4}+X^{3}+X^{2}+X^{2}+X}{X^{3}+X^{2}} \\
X+1
\end{array}
\end{aligned}
$$

Arithmetic of $\operatorname{GF}\left(\mathbf{2}^{m}\right)$

Division

- Example Use binary notation to divide $X^{4}+1$ by $\frac{X^{2}+X+1}{}$

$$
\begin{aligned}
& \frac{10001}{111}=\frac{11100 \oplus 1101}{111} \\
& =100 \oplus \frac{1101}{111} \\
& =100 \oplus \frac{1110 \oplus 11}{111} \\
& =100 \oplus 10 \oplus \frac{11}{111} \\
& =110 \oplus \frac{11}{111} \\
& \text { or } X^{2}+X+\frac{X+1}{X^{2}+X+1}
\end{aligned}
$$

Arithmetic of GF($\left.\mathbf{2}^{m}\right)$

MATLAB Algorithms.

- binxor.m :

Binary addition is performed in one line in $\mathrm{c}=$ dec2bin(bitxor(bin2dec(a),bin2dec(b)));

- binmult.m:

Binary multiplication applying a bitshift and distribution.

- bindiv.m:

Binary division

- bin2poly.m:

Converts a binary number to a polynomial.

Irreducible Polynomials

- Irreducible polynomial:
$P(X) \in Z_{p}[X]$ that does not factor into polynomials of lower degree mod 2.
- Used to construct a finite field with p^{n} elements for prime p and integer $n \geq 1$ by working modulo $P(X)$ for irreducible $P(X)$.
- Consider the possible $2^{\text {nd }}$ degree polynomials in
$\boldsymbol{Z}_{2}[X]$.
$X^{2}, \quad X^{2}+1, \quad X^{2}+X, \quad X^{2}+X+1$
- Three of these can be factored into polynomials in
$Z_{2}[X]$ as

$$
\begin{aligned}
& X \cdot X=X^{2} \\
& X \cdot(X+1)=X^{2}+X \\
& (X+1) \cdot(X+1)=X^{2}+1
\end{aligned}
$$

- $X^{2}+X+1$ is irreducible.

Irreducible Polynomials

- For small values of n we can check all products of polynomials in $Z_{n-1}[X]$ to find a polynomial that is irreducible.
- Consider the nonzero elements of $G F\left(2^{3}\right)$

$$
\begin{array}{ccc}
X^{2}, & X^{2}+X, & X^{2}+1, \\
X, & X+1, & X^{2}+X+1
\end{array}
$$

Irreducible Polynomials

- We will check all products that produce a polynomial of degree 3 .
$X^{2}(X)=X^{3}$
$X^{2}(X+1)=X^{3}+X$
$\left(X^{2}+X\right)(X)=X^{3}+X^{2}$
$\left(X^{2}+X\right)(X+1)=X^{3}+X^{2}+X^{2}+X=X^{3}+X$
$\left(X^{2}+1\right)(X)=X^{3}+X$
$\left(X^{2}+1\right)(X+1)=X^{3}+X^{2}+X+1$
$\left(X^{2}+X+1\right)(X)=X^{3}+X^{2}+X$
$\left(X^{2}+X+1\right)(X+1)=X^{3}+X^{2}+X+X^{2}+X+1$

$$
=X^{3}+1
$$

Multiplicative Inverse

- When working with $G F\left(2^{m}\right)$ modulo an irreducible polynomial, all polynomials have a multiplicative inverse.
- For $a(X) \in G F\left(2^{m}\right)$ and irreducible polynomial $m(X) \in G F\left(2^{m}\right)$ by the Chinese Remainder Theorem there exists polynomials $b(X), c(X) \in$ $G F\left(2^{m}\right)$ such that

$$
\begin{gathered}
a(X) b(X)+m(X) c(X)=1 \\
\quad \text { or } \\
a(X) b(X) \equiv 1(\bmod m(X)) \\
\Rightarrow a^{-1}(X)=b(X)(\bmod m(X))
\end{gathered}
$$

Multiplicative Inverse

- We can now solve this equation with the Extended Euclidean Algorithm
- Consider

$$
G F\left(2^{3}\right)=Z_{2}[X]\left(\bmod X^{3}+X+1\right)
$$

- Example Find the inverse of $a(X)=X^{2}+X+1$ in $G F\left(2^{3}\right)$.

Step 1: Euclidean Algorithm:
$X^{3}+X+1=(X+1)\left(X^{2}+X+1\right)+(X)$
$X^{2}+X+1=(X+1)(X)+1$
The last remainder is 1 , which tells us that the greatest common divisor is 1
(cf. $X^{3}+X+1$ is irreducible.)

Multiplicative Inverse

- Example (cont.)

Step 2: Work backwards to write 1 as linear combination of the two polynomials.

$$
x^{3}+x+1=(x+1)\left(x^{2}+x+1\right)+(x) \Rightarrow x=x^{3}+x+1+(x+1)\left(x^{2}+x+1\right)
$$

$x^{2}+x+1=(x+1)(x)+1 \Rightarrow 1=\left(x^{2}+x+1\right)+(x+1)(x)$
$1=\left(x^{2}+X+1\right)+(X+1)(X)$
$=\left(X^{2}+X+1\right)+(x+1)\left(X^{3}+X+1+(x+1)\left(X^{2}+x+1\right)\right)$
$=\left(1+(X+1)^{2}\right)\left(X^{2}+X+1\right)+(X+1)\left(X^{3}+X+1\right)$

$$
=\left(X^{2}\right)\left(X^{2}+X+1\right)+(X+1)\left(X^{3}+X+1\right)
$$

Hence,

$$
\left(X^{2}\right)\left(X^{2}+X+1\right) \equiv 1\left(\bmod X^{3}+X+1\right)
$$

And

$$
a^{-1}(X) \equiv X^{2}\left(\bmod X^{3}+X+1\right)
$$

GF($\left.2^{m}\right)$ and Rijndael

Basics of Rijndael (AES)

- In 2002, the National Institute of Standards and Technology (NIST) adopted the Advanced Encryption Standard (AES) also known as Rijndael.
- Currently the standard encryption algorithm that is designed to be used by Federal departments and agencies have information that requires encryption [NIST].
- Algorithm accepts a 128 bit sequence of plaintext information and cycles through four layers to produce the ciphertext which is also a 128 bit sequence of data.

GF($\left.2^{m}\right)$ and Rijndael

- The first step in the Rijndael algorithm is to group the 128 bit input into 16 bytes of 8 bits and arrange them into a 4×4 array of bytes.

- Input array is then manipulated by the 4 -layer algorithm in 10,12 , or 14 rounds for key lengths of 128,192 , or 256 bits.

ByteSub (BS)

- A non-linear byte substitution routine that operates on each byte with bits $\left\{b_{0}, b_{1} \ldots, b_{7}\right\}$ using the affine transformation
$\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{l}b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{6}\end{array}\right)+\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}b^{\prime}{ }_{0} \\ b_{1}^{\prime} \\ b^{\prime}{ }_{2} \\ b_{3}^{\prime} \\ b_{4}^{\prime} \\ b^{\prime}{ }_{5} \\ b_{6}^{\prime}\end{array}\right)$.
- To simplify matters, we can compute this transformation on all possible bytes in $G F\left(2^{8}\right)$ place them in a look up table called an S-box.

ShiftRow (SR)

- The ShiftRow (SR) layer offsets the bytes cyclically by $0,1,2$, and 3 columns in rows 1,2 , 3 , and 4 respectively.

$$
\left(\begin{array}{llll}
s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\
s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\
s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\
s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}
\end{array}\right) \quad\left(\begin{array}{llll}
s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\
s_{1,1} & s_{1,2} & s_{1,3} & s_{1,0} \\
s_{2,2} & s_{2,3} & s_{2,0} & s_{2,1} \\
s_{3,3} & s_{3,0} & s_{3,1} & s_{3,2}
\end{array}\right)
$$

MixColumns (MC)

- In the MixColumn layer, each column becomes a 4-term polynomial in $G F\left(2^{8}\right)$ such as

$$
b(x)=b_{3} X^{3}+b_{2} X^{2}+b_{1} X+b_{0}
$$ where b_{0}, b_{1}, b_{2}, and b_{3} are bytes from the column of the shift matrix

- Multiply this polynomial modulo $\left(X^{4}+1\right)$ by $a(X)=\{0011\} X^{3}+\{0001\} X^{2}+\{0001\} X+\{0010\}$
- Note: $X^{4}+1$ is not irreducible, so an inverse is not guaranteed, but $a(x)$ does have an inverse:
$a^{-1}(X)=\{1011\} X^{3}+\{1101\} X^{2}+\{1001\} X+\{1110\}\left(\bmod X^{4}+1\right)$

MixColumns (MC)

- This gives us
$d_{0}=a_{0} \cdot b_{0} \oplus a_{3} \cdot b_{1} \oplus a_{2} \cdot b_{2} \oplus a_{1} \cdot b_{3}$
$d_{1}=a_{1} \cdot b_{0} \oplus a_{0} \cdot b_{1} \oplus a_{3} \cdot b_{2} \oplus a_{2} \cdot b_{3}$
$d_{2}=a_{2} \cdot b_{0} \oplus a_{1} \cdot b_{1} \oplus a_{0} \cdot b_{2} \oplus a_{3} \cdot b_{3}$
$d_{3}=a_{3} \cdot b_{0} \oplus a_{2} \cdot b_{1} \oplus a_{1} \cdot b_{2} \oplus a_{0} \cdot b_{3}$
- In Matrix form

$$
\left(\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right)\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)
$$

This matrix sufficiently defines the MixColumn transformation when applied to each column $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)^{T}$ of the shift matrix

MixColumns (MC)

- Let's analyze this product $a(X) b(X)$ with

$$
a(X)=\sum_{i=0}^{3} a_{i} X^{i}, \quad b(X)=\sum_{j=0}^{3} b_{j} X^{j}
$$

- We note that when working $\left(\bmod X^{4}+1\right)$:

$$
X^{i} \equiv X^{i \bmod 4}\left(\bmod X^{4}+1\right)
$$

- Multiplying and collecting like terms, we get
$c(X)=a(X) \cdot b(X)=\sum_{n=i+j=0}^{6} c_{n} X^{n}=\sum_{n=i+j=0 \bmod 4}^{3 \bmod 4} d_{n} X^{n}$
Where

$$
d_{n}=\sum_{i+j=0 \bmod 4}^{3 \bmod 4} a_{i} \cdot b_{j}
$$

AddRoundKey (ARK)

Key Schedule (cont.)

a) Designate the first 4 columns $W(0), W(1), W(2), W(3)$
b) For successive columns i,

If $i>0 \bmod 4$, then

$$
W(i)=W(i-4) \oplus W(i-1)
$$

If $i \equiv 0 \bmod 4$, then

$$
W(i)=W(i-4) \oplus T(W(i-1))
$$

$T(W)$:Shift elements cyclically in column $W(i-1)$, Replace bytes with S-box values, compute

$$
r(i)=00000010^{(i-4) / 4}, \text { and }
$$

$$
T(W)=(e+r(i), f, g, h)
$$

Encryption/Decryption

Rijndael Encryption Summary

- For the 128-bit key, we encryption includes

1. ARK with the o ${ }^{\text {th }}$ round key,
2. Nine rounds of BS, SR, MC, and ARK, using keys 1 to 9 , and
3. Tenth round of BS, SR, and ARK using the $10^{\text {th }}$ key.

Rijndael Decryption Summary

Each encryption layer is invertible! The reverse algorithm is:

1. ARK with 10 th round key,
2. Nine rounds of IBS, ISR, IMC, IARK using keys 9 to 1
3. Tenth round of IBS, ISR, and ARK using the 1oth key.

Decryption Layers

Inverse ByteSub (IBS)

- Apply the inverse affine transformation to each byte in the shift array and find the multiplicative inverse of the result in $G F\left(2^{8}\right)$.
- Again... we can use another look-up table.

Inverse ShiftRow (ISR)

- Shift rows to the right instead of the left by 0,1 , 2 , and 3 entries, respectively
- Resulting in the byte-wise formula:

$$
s_{r,(c+\operatorname{shift} t(r, 4)) \bmod 4}^{\prime}=s_{r, c}
$$

Decryption Layers

Inverse MixColumn (IMC)

- Treat each column as a $4^{\text {th }}$-degree polynomial modulo $X^{4}+1$ in $G F\left(2^{8}\right)$.
- Compute the matrix product below column-bycolumn

$$
\left(\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right)\left(\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Where a_{i} entries are coefficients of $a^{-1}(X)=\{1011\} X^{3}+\{1101\} X^{2}+\{1001\} X+\{1110\}\left(\bmod X^{4}+1\right)$

Error Correction Codes

- Mistakes happen! When transmitting a cryptographic ciphertext, the corruption of even one bit can make a plaintext message unreadable.
- Digital data is susceptible to errors from bit reversal due to "noise".
- Error correction codes can identify a bit or bits that have been altered so they can be returned to their original state.

Hamming Codes

- Finite fields are the key to many useful Error correction codes.
- Types of Hamming Codes:

Linear and Cyclic

- $[n, k]$ block code: encodes a k-bit information word to an n-bit codeword.
- Step 1: multiply the k-bit information word by generating matrix.
- Step 2: (after transmision) multiply the n-bit codeword by parity check matrix.

Linear Codes

- We will work with $G F\left(2^{3}\right)$ to create a hamming matrix. [RT1]
- We first need a primitive polynomial:
monic irreducible polynomial whose roots are primitive elements.
- We found irreducible polynomial

$$
P(X)=X^{3}+X^{2}+1
$$

- Is it Primitive in $G F\left(2^{3}\right)$? Let's Check
- If a is a root, then

$$
P(a)=a^{3}+a^{2}+1=0 \Rightarrow a^{3}=a^{2}+1
$$

Generating Matrix

- Using the theorem [TW] stated previously, the generating matrix is:

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Example Suppose we begin with a plaintext word, $p=1010$, We will encode it with G, alter one bit, then use the parity check matrix H to identify the error.

Parity Check Matrix

- We see from the power $a^{7}=1$ that we have the cyclic group $G F^{*}\left(2^{3}\right)$ working $\left(\bmod X^{3}+X^{2}+1\right)$
- Theorem [TW]: If $G=\left[I_{k}, P\right]$ is the generating matrix for a code C, then $H=\left[-P^{T}, I_{n-k}\right]$ is the parity check matrix for C.
- Constructing the parity check matrix [RT1]: Compile the remainders in the table into the matrix

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
a^{6} & a^{5} & a^{4} & a^{3} & a^{2} & a^{1} & a^{0}
\end{array}\right]=} \\
& H=\left(\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)^{T}
\end{aligned}
$$

Hamming Example

Example (cont)

Step 1. Compute code word $c=p G$

$$
\left.\begin{array}{rl}
c & =p G=\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0
\end{array} 1\right.
\end{array}\right)
$$

- Observe: codeword contains the plaintext word followed by three check bits 001.
- Now, we will alter the $4^{\text {th }}$ bit (to simulate an error):

$$
c^{\prime}=\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Hamming Example

Example (cont)

$$
\left.\begin{array}{lllllll}
c^{\prime}=\left(\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right. & 1
\end{array}\right)
$$

Step 2. Compute the check bit product $c^{\prime} H$

$$
\begin{aligned}
c^{\prime} H & =\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)^{T} \\
& =\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Note: unaltered codewords produce $c H=\mathbf{0}$.
- $c^{\prime} H=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$ is the $4^{\text {th }}$ column of H.
- Hence $4^{\text {th }}$ bit was changed.

Hamming Example

Example (cont)

Step 3: Correct bit and check

$$
\begin{aligned}
& c=\left(\begin{array}{lllllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& c H=\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)^{T} \\
&=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Finite Elements and P.D.E.S

- The applications of Partial Differential Equations (PDEs) are
- Many analytic techniques are available for solving linear PDEs in standard forms:
- Wave equation:

$$
-a^{2} u_{x x}+u_{t t}+c u=F(x, t), \quad k>0
$$

- Poisson/Laplace equation:

$$
a^{2} u_{x x}+u_{t t}+c u=g(x, t), \quad a>0
$$

- Heat equation:

$$
-k u_{x x}+u_{t}+c u=h(x, t), \quad a>0
$$

Finite Element Method

- A given region is divided into a finite number of geometric sub-regions, called the finite elements.
- Use a set of basis functions from a chosen function space to extrapolate the values of the solution for each finite element using initial values and boundary values

FEM and Poisson's Equation

Let's consider the Poisson problem:

$$
\begin{array}{rllll}
-\Delta u & =f & \text { in } & \Omega, & \Omega=[0,1]^{2} \\
u & =0 & \text { on } & \partial \Omega &
\end{array}
$$

We will implement FEM with MATLAB algorithms.

- http://knightmath.com/tamu/poisson/

Numerical Methods

- In many applications, the equations become too complex for known analytical methods.
- In this case, we must use numerical methods of approximating solutions to PDEs.
- Difference methods-
approximate derivatives by calculating differences over increasingly small intervals that converge to the analytical solution
- Other useful methods:

Crank-Nicolson method and Rayleigh-Ritz method

Finite Element Method

The key steps:

- Define our finite element space V_{h} and the nature and parameters of the functions v in V_{h}.
- Compute the local stiffness matrix and the coefficients of the local basis functions.
- Compute the values of the global nodes and map the local nodes to global nodes.
- Compute the global stiffness matrix, S, (coefficients of the system which we need to solve.)
- Compute the values of the vector $b=\left(b_{i}\right)$, where $b_{i}=\int_{\Omega} f(x, y) \phi_{i}(x, y) d x$
- Finally, we will solve the matrix equation $S x=\mathbf{b}$.

2k Factorial Design

- Experiments are an important tool for all areas of science and engineering.
- We must carefully consider the design of the experiment.
- Often a result is affected by multiple factors.
- It is useful to perform a factorial experiment, which is performed at all factor levels.

2^{k} Factorial Design

- With k factors that can be controlled, we can use a 2^{k} factorial design.
- Analyze the effects of the individual factors as well as the joint effect of the factors on the response.
- Quantitative or qualitative responses studied at only two levels for each factor.
- Called a 2^{k} factorial design since the experiment requires 2^{k} observations. [MR]

2^{k} Factorial Design

- In a 2^{k} factorial design, the combinations of the $(+)$ and $(-)$ symbols mirror the binary representation of the polynomials in $\operatorname{GF}\left(2^{k}\right)$.
- Testing of each of the factors at many levels is often unnecessary.
- The factorial model gives us a good picture of which factors are significant by testing them at only two levels each.

2^{k} Factorial Design

- 2^{2} factorial design \Rightarrow two factors (A and B)
- Observe these factors at two levels, low(-) and high(+),
- Requires $2^{2}=4$ observations as shown in the geometric model
- (1), a, b, and $a b$ represent the total of all n observations taken at these levels.
- Design addresses all possible factors and interactions.

Clinical Samples

Example:

An article in Analytica Chimica Acta examined four parameters that affect the sensitivity and detection of the analytical instruments used to measure clinical samples. They optimized the sensor function using EBC samples spiked with acetone, a known clinical biomarker in breath. The following table shows the results for a single replicate of a 2^{4} factorial experiment for one of the outputs, the average amplitude of acetone peak over three repetitions.

Clinical Samples

- Data: A 2^{4} factorial experiment on clinical samples
Objective: Factor analysis and interaction of factor using an effects model
Hypotheses: We consider the null hypotheses below with a confidence level of 95%.
- Main Effects $-H_{0}:(\alpha)_{i}=0$

2-way Interaction Effects - $H_{0}:(\alpha \beta)_{i j}=0$
3-way Interaction Effects - $H_{0}:(\alpha \beta \gamma)_{i j k}=0$
(We will ignore 4-way interactions since they are highly unlikely to be significant.)

Clinical Samples

- Significant main effects: B, C, and D (p-value<.05)
- Significant two-way interactions: $\mathrm{A}^{*} \mathrm{C}$ and $\mathrm{B}^{*} \mathrm{D}$.

Effect Tests					
Source	Nparm	DF		F Ratio	Prob>F
A	1	1	$3.025 \mathrm{e}-7$	121.0000	0.0577
B	1	1	0.00000225	900.0000	0.0212^{*}
c	1	1	5.625e-7	225.0000	0.0424^{*}
D	1	1	0.00000064	256.0000	0.0397
$A^{\prime} \mathrm{B}$	1	1	4.8148e-35	0.0000	1.0000
$A^{\circ} \mathrm{C}$	1	1	$4.225 \mathrm{e}-7$	169.0000	0.0489*
$A^{*}{ }^{\circ}$	1	1	0.00000001	4.0000	0.2952
$\mathrm{B}^{\circ} \mathrm{C}$	1	1	0.00000016	64.0000	0.0792
$\mathrm{B}^{\prime} \mathrm{D}$	1	1	$5.625 \mathrm{e}-7$	225.0000	0.0424^{*}
C'D	1	1	0.00000001	4.0000	0.2952
$A^{*} B^{*} C^{\text {c }}$	1	1	0	0.0000	1.0000
$A^{*} B^{\prime} D^{\prime}$	1	1	1.225e-7	49.0000	0.0903
$A^{*} C^{\prime} D^{\text {d }}$	1	1	0.00000009	36.0000	0.1051
$\mathrm{B}^{\circ} \mathrm{C} \cdot \mathrm{D}$	1	1	3.025 e-7	121.0000	0.0577

Clinical Samples

- interaction profile plots show interactions of A,C and B,D.

Clinical Samples

- Since A is not a main effect, we will remove this factor and recalculate the model. When we do this, we get a p-value of .0150. This is an acceptable value for our goodness of fit.

Conclusion

- Many real-life applications of mathematics require continuousness and infinite considerations.
- However, considering finite sets can prove quite effective in understanding and controlling results.
- In all situations, finite sets must be designed with much care and forethought to produce useful results.
- If this is done, we can begin to understand the infinite from our finite perspective.
[TW] Trappe, Wade, and Washington, Lawrence C. Introduction to Cryptography with Code Theory. 2 Edition. Prentice Hall. 2006
[MR] Montgomery, Douglas C. and Runger, George C. Applied Statistics and Probability [RT1] Tirh Jor Co 201
[RT1] Tervo, Richard. Error Control Codes from Galois Fields. Course notes for EE4253
Digital Communications. University of New Brunswick.
[RT2] Tervo, Richard. The Hamming Code Revisited - A Matrix Approach. Course notes for EE4253 Digital Communications. University of New Brunswick.
[NW] Wagner, Niel R., The Laws of Cryptography; The Finite Field $G F\left(2^{8}\right)$ http: / / www.cs.utsa.edu/ / wagner/laws/FFM.html
[NIST] Specification for the Advanced Encryption Standard (AES). National Institute of Standards and Technology. November 26, 2001.
[HM] Hansen, Tom and Mullen, G.L. Primitive Polynomials Over Finite Fields. Mathematics of Computation. American Mathematical Society. 1992.
http://www.ams.org/journals/mcom/1992-59-200/So025-5718-1992-1134730-7/S0025-
[MK] Kyuregyan, Melsik K. Iterated constructions of irreducible polynomials over finite fields with linearly independentroots. Science Direct. 2003.

