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Finite Fields and Cryptography

A field is a set that
1. is associative, commutative, and distributive for 

addition and multiplication, 
2. contains an additive identity element (zero) and 

multiplicative identity element (unity),
3. contains an additive inverse for all elements, and 
4. contains a multiplicative inverse for all non-zero 

elements.

• A finite field is field that has a finite number of 
elements.  

• Order: the number of elements in a field

• The order must be of the form -. for some prime 
number - and integer / > 1.

• Standard	Notation: 	34(-.)	where the "34" 
represents “Galois Field” in honor of Evariste
Galois.  

• In cryptographic systems, it is common to apply 
the field 34(2.)	and work modulo 2 to work 
with modern computers. 

Basics of Finite Fields

• 56 7 : the set of polynomials with coefficients 

mod -.
• We will typically work with polynomials in 58[7]
which we often represent it in binary notation. 

• For example, 
X< + X> + X? + X + 1 → 100010011

(an important polynomial for the Advanced 
Encryption Standard (AES).)

• The binary digits A<ABACADA>A?A8AEAF are the 
coefficients of A<7

< +⋯+ AE7
E + AF.

Constructing HI(JK)

Addition and Subtraction

• Addition is the XOR operation, denoted with the 
symbol ⊕	modulo 2.

• 1⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0
• Example : Add 

7< + 7> + 7? + 7 + 1 + 7< + 7B + 7? + 1
as a polynomial and in binary notation.
7< + 7> + 7? + 7 + 1 + 7< + 7B + 7? + 1

= 7B + 7> + 7
Note: the 7<, 7?, and1 terms have vanished since 
the coefficients are 2 ≡ 0	(mod2).

Arithmetic of HI(JK)

• Example (cont.)

In binary notation this sum is
100011011 ⊕ 110001001 = 010010010 .

• Note:  subtraction of polynomials in O8[7] is 
equivalent to addition since −1 ≡ 1	(mod	2)

Q − A ≡ Q + −1 A ≡ Q + A	 mod	2
for all Q, A ≡ 0	RS	1	(mod	2).

Arithmetic of HI(JK)
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Multiplication

• Multiplication of polynomials in O8[7] is done in 
the normal manner applying distribution.  

• Some powers of 7 will vanish in mod 2.

• Example Compute 78 + 7 + 1 7 + 1 as a 
polynomial and in binary notation.

78 + 7 + 1 7 + 1
= 7? + 78 + 7 + 78 + 7 + 1

= 7? + 1

Arithmetic of HI(JK)

MultiplicationMultiplicationMultiplicationMultiplication
Example (cont.)
In binary notation:

0111 ⋅ 0011
= 0111 ⋅ 0010 ⊕ 0111 ⋅ {0001}
= 1110 ⊕ 0111 = 1001

• Note: multiplying {0111} by {0010} shifts all the 
bits to the left on place and adds a 0 to the right.

• Hence, binary multiplication is simply a series of 
“bit shifts” and XOR operations.

Arithmetic of HI(JK)

MultiplicationMultiplicationMultiplicationMultiplication
Example Compute the product of the 8-bit binary 
numbers 10011011 ⋅ {00100101}

10011011 ⋅ 00100101
= 10011011 ⋅ 00100000
⊕ 10011011 ⋅ 00000100
⊕ 10011011 ⋅ 00000001

= 1001101100000
⊕ 0001001101100
⊕ 0000010011011
= {1000110010111}

Arithmetic of HI(JK)
Division

• Method 1: long division in O8[7].
• Example Use long division to divide 7> + 1 by 

78 + 7 + 1

78 + 7 + 1   )   7>  +  1              
                              7  > + 7? + 78    

                                           7? + 78 + 1
                                           7? + 78 + 7

                                                                     7 + 1

Arithmetic of HI(JK)

                    78 +7 S.  7 + 1

DivisionDivisionDivisionDivision
7> + 1 = 78 + 7 78 + 7 + 1 + 7 + 1

RS
7> + 1 ≡ 7 + 1 mod 78 + 7 + 1

• Method 2: Binary Division
• Example Use binary notation to divide 7> + 1 by 

78 + 7 + 1

Arithmetic of HI(JK)
DivisionDivisionDivisionDivision
• Example Use binary notation to divide 7> + 1 by 

78 + 7 + 1
10001

111 = 11100 ⊕ 1101
111

= 100 ⊕ 1101
111

= 100 ⊕ 1110 ⊕ 11
111

= 100 ⊕ 10 ⊕ 11
111

= 110 ⊕ 11
111

or 78 + 7 + ^_E
^`_^_E

Arithmetic of HI(JK)
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MATLAB Algorithms.

• binxor.m : 
Binary addition is performed in one line in
c=dec2bin(bitxor(bin2dec(a),bin2dec(b)));

• binmult.m:
Binary multiplication applying a bitshift and 
distribution.

• bindiv.m:
Binary division 

• bin2poly.m:
Converts a binary number to a polynomial.

Arithmetic of HI(JK)

• For small values of / we can check all products 
of polynomials in O.aE[7] to find a polynomial 
that is irreducible. 

• Consider the nonzero elements of 34(2?)
	78, 78 + 7, 78 + 1, 78 + 7 + 1,		

7, 7 + 1, 1

Irreducible Polynomials

• Irreducible polynomial: 
b 7 ∈ 56[7] that does not factor into polynomials 
of lower degree mod 2. 

• Used	to	construct	a	finite	field	with	-. elements	for	
prime	- and	integer	/ ≥ 1 by	working	modulo	b(7)
for	irreducible	b(7).

• Consider the possible 2nd degree polynomials in 
58[7].

78, 78 + 1, 78 + 7, 78 + 7 + 1
• Three of these can be factored into polynomials in 
58[7] as

7 ⋅ 7 = 78

7 ⋅ 7 + 1 = 78 +7
7 + 1 ⋅ 7 + 1 = 78 + 1

• 78 + 7 + 1	is	irreducible.

Irreducible Polynomials

• We will check all products that produce a 
polynomial of degree 3.

78 7 = 7?

78 7 + 1 = 7? + 7
78 + 7 7 = 7? + 78

78 + 7 7 + 1 = 7? + 78 + 78 + 7 = 7? + 7
78 + 1 7 = 7? + 7
78 + 1 7 + 1 = 7? + 78 + 7 + 1
78 + 7 + 1 7 = 7? + 78 + 7
78 + 7 + 1 7 + 1 = 7? + 78 + 7 + 78 + 7 + 1

= 7? + 1

Irreducible Polynomials

• We observe that the only O8[7] polynomials of 
degree 3 that are not produced above are 

g 7 = 7? + 78 + 1, and
g 7 = 7? + 7 + 1.

• Thus, these are irreducible polynomials in 
34(2?)

Irreducible Polynomials

• When working with 34(2h)modulo an 
irreducible polynomial, all polynomials have a 
multiplicative inverse.

• For Q 7 ∈ 34 2h and irreducible polynomial 
i 7 ∈ 34(2h) by the Chinese Remainder 
Theorem there exists polynomials A 7 , j 7 ∈
34(2h) such that

Q 7 A 7 +i 7 j 7 = 1
or

Q 7 A 7 ≡ 1		 mod	i 7 	
⇒ 	QaE 7 = A 7 		 mod	i 7

Multiplicative Inverse
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• We can now solve this equation with the 
Extended Euclidean Algorithm

• Consider
34 2? = O8 7 		 mod	7? + 7 + 1

• Example Find the inverse of Q 7 = 78 + 7 + 1
in 34 2? .

Step 1: Euclidean Algorithm:
7? + 7 + 1 = 7 + 1 78 + 7 + 1 + 7
78 + 7 + 1 = 7 + 1 7 + 1

The last remainder is 1, which tells us that the 
greatest common divisor is 1 

(cf. 7? + 7 + 1	is irreducible.)

Multiplicative Inverse

• Example (cont.)

Step 2: Work backwards to write 1 as linear 
combination of the two polynomials.

7? + 7 + 1 = 7 + 1 78 + 7 + 1 + 7 			⇒ 		l = lm + l +n + l + n lJ + l + n

78 + 7 + 1 = 7 + 1 7 + 1			 ⇒ 				n = (lJ + l + n) + l + n l

1 = 78 + 7 + 1 + 7 + 1 7
= 78 + 7 + 1 + 7 + 1 7? + 7 + 1 + 7 + 1 78 + 7 + 1

= 1 + 7 + 1 8 78 + 7 + 1 + 7 + 1 7? + 7 + 1
= 78 78 + 7 + 1 + 7 + 1 7? + 7 + 1

Hence,

78 78 + 7 + 1 ≡ 1		 mod	7? + 7 + 1
And

QaE 7 ≡ 78	 mod	7? + 7 + 1

Multiplicative Inverse

Basics	of		Basics	of		Basics	of		Basics	of		RijndaelRijndaelRijndaelRijndael (AES)(AES)(AES)(AES)
• In	2002,	the	National	Institute	of	Standards	and	
Technology	(NIST)	adopted	the	Advanced	
Encryption	Standard	(AES)	also	known	as	
Rijndael.		

• Currently	the	standard	encryption	algorithm	that	
is	designed	to	be	used	by	Federal	departments	and	
agencies	have	information	that	requires	
encryption	[NIST].		

• Algorithm	accepts	a	128	bit	sequence	of	plaintext	
information	and	cycles	through	four	layers	to	
produce	the	ciphertext which	is	also	a	128	bit	
sequence	of	data.

HI(JK) and Rijndael

• The first step in the Rijndael algorithm is to 
group the 128 bit input into 16 bytes of 8 bits 
and arrange them into a 4 t 4 array	of	bytes.

• Input array is then manipulated by the 4-layer 
algorithm in 10, 12, or 14 rounds for key lengths 
of 128, 192, or 256 bits.

HI(JK) and Rijndael

• A	non-linear	byte	substitution	routine	that	
operates	on	each	byte	with	bits	{AF, AE… , AB} using	
the	affine	transformation

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⋅

AF
AE
A8
A?
A>
AD
AC

+

1
1
0
0
0
1
1
0

=

A′F
A′E
A′8
A′?
A′>
A′D
A′C

.

• To simplify matters, we can compute this 
transformation on all possible bytes in 34(2<)
place them in a look up table called an S-box.

ByteSub (BS)
S-Box Values

S(rs)
s

0 1 2 3 4 5 6 7 8 9 a b c d e f

R

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 

ByteSub (BS)

Consider {10011011} and use the first four digits 1001 = {9} which tell us to look 
in row 9, and the second four digits 1011 = {b} which gives us column b.

10011011 = 9b → 81 = 10000001 .

S-box in hexadecimal format [NIST]
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• The ShiftRow (SR) layer offsets the bytes 
cyclically by 0, 1, 2, and 3 columns in rows 1, 2, 
3, and 4 respectively.

ShiftRow (SR)

• In the MixColumn layer, each column becomes a 
4-term polynomial in 34(2<) such as

w x = wmlm + wJlJ + wnl + wy
where AF, AE, A8, and A? are bytes from the 
column of the shift matrix

• Multiply this polynomial modulo (7> + 1) by
z l = yynn lm + yyyn lJ + yyyn l + yyny

• Note: 7> + 1 is not irreducible, so an inverse is 
not guaranteed, but Q({) does have an inverse:

zan l = nynn lm + nnyn lJ + nyyn l + {nnny}    (|}~ l� + n)

MixColumns (MC)

• This gives us
�F = QF ⋅ AF ⊕ Q? ⋅ AE ⊕ Q8 ⋅ A8 ⊕ QE ⋅ A?�E = QE ⋅ AF ⊕ QF ⋅ AE ⊕ Q? ⋅ A8 ⊕ Q8 ⋅ A?�8 = Q8 ⋅ AF ⊕ QE ⋅ AE ⊕ QF ⋅ A8 ⊕ Q? ⋅ A?�? = Q? ⋅ AF ⊕ Q8 ⋅ AE ⊕ QE ⋅ A8 ⊕ QF ⋅ A?

• In Matrix form
QF Q? Q8 QE
QE QF Q? Q8
Q8 QE QF Q?
Q? Q8 QE QF

AF
AE
A8
A?

=
�F
�E
�8
�?

This matrix sufficiently defines the MixColumn
transformation when applied to each column 

AF, AE, A8, A? � of the shift matrix

MixColumns (MC)

• Let’s analyze this product Q 7 A(7) with

Q 7 = � Q�7�
?

��F
, A 7 = � A�7�

?

��F
• We note that when working mod 7> + 1 :

7� ≡ 7� ���> mod 7> + 1
• Multiplying and collecting like terms, we get

j 7 = Q 7 ⋅ A 7 = � j.7.
C

.��_��F
= � �.7.

? ��� >

.��_��F��� > 
Where   

�. = � Q� ⋅ A�
?��� >

�_��F ��� >

MixColumns (MC)

• XOR the shift matrix with the round key matrix as 
defined by the key schedule which is again defined 
by operations in 34(2<).

• The Rijndael system is designed to work with a 
key of 128, 192, or 256.  (We’ll use a 128-bit key)

Key ScheduleKey ScheduleKey ScheduleKey Schedule
1. Arrange the 128-bit key into a 4 × 4 matrix of 

bytes

2. Add 40 columns to the matrix as follows:

AddRoundKey (ARK)

Key Schedule (cont.)Key Schedule (cont.)Key Schedule (cont.)Key Schedule (cont.)
a) Designate the first 4 columns 

� 0 , � 1 , � 2 , �(3)
b) For successive columns i,

If  � > 0 mod 4, then
� � = � � − 4 ⊕ � � − 1

If � ≡ 0 mod 4, then
� � = � � − 4 ⊕ � � � − 1

� � :Shift elements cyclically in column �(� − 1),
Replace bytes with S-box values, compute

S � = 00000010(�a>) >⁄ , and
� � = � + S � , g, �, ℎ

AddRoundKey (ARK)
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RijndaelRijndaelRijndaelRijndael Encryption SummaryEncryption SummaryEncryption SummaryEncryption Summary
• For the 128-bit key, we encryption includes
1. ARK with the 0th round key,

2. Nine rounds of BS, SR, MC, and ARK, 
using keys 1 to 9, and 

3. Tenth round of BS, SR, and ARK using the 10th key.

RijndaelRijndaelRijndaelRijndael Decryption SummaryDecryption SummaryDecryption SummaryDecryption Summary
Each encryption layer is invertible! The reverse algorithm is:
1. ARK with 10th round key,

2. Nine rounds of IBS, ISR, IMC, IARK using keys 9 to 1

3. Tenth round of IBS, ISR, and ARK using the 10th key.

Encryption/Decryption

Inverse Inverse Inverse Inverse ByteSubByteSubByteSubByteSub (IBS)(IBS)(IBS)(IBS)
• Apply the inverse affine transformation to each 

byte in the shift array and find the multiplicative 
inverse of the result in 34(2<)....

• Again… we can use another look-up table.

Inverse Inverse Inverse Inverse ShiftRowShiftRowShiftRowShiftRow (ISR)(ISR)(ISR)(ISR)
• Shift rows to the right instead of the left by 0, 1, 
2, and 3 entries, respectively

• Resulting in the byte-wise formula:
��, �_����� �,> ��� >

� = ��,�

Decryption Layers

Inverse MixColumn (IMC)

• Treat each column as a 4th –degree polynomial 
modulo 7> + 1 in 34(2<).

• Compute the matrix product below column-by-
column

QF Q? Q8 QE
QE QF Q? Q8
Q8 QE QF Q?
Q? Q8 QE QF

�F
�E
�8
�?

=
AF
AE
A8
A?

Where Q� entries are coefficients of
zan l = nynn lm + nnyn lJ + nyyn l + {nnny}    (|}~ l� + n)

Decryption Layers

• Mistakes happen!  When transmitting a 
cryptographic ciphertext, the corruption of even 
one bit can make a plaintext message 
unreadable.

• Digital data is susceptible to errors from bit 
reversal due to “noise”.

• Error correction codes can identify a bit or bits 
that have been altered so they can be returned to 
their original state.

Error Correction Codes

• Finite fields are the key to many useful Error 
correction codes.

• Types of Hamming Codes:
Linear and Cyclic

• [/, �] block code: encodes a �-bit information 
word to an /-bit codeword.

• Step 1: multiply the �-bit information word by 
generating matrix.

• Step 2: (after transmision) multiply the /-bit 
codeword by parity check matrix.

Hamming Codes

• We will work with 34(2?) to create a hamming 
matrix. [RT1]

• We first need a primitive polynomial:
monic irreducible polynomial whose roots are 
primitive elements.

• We found irreducible polynomial
b 7 = 7? + 78 + 1

• Is it Primitive in 34(2?)?  Let’s Check
• If Q is a root, then 

b Q = Q? + Q8 + 1 = 0 ⇒   Q? = Q8 + 1

Linear Codes
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QF = QF = 1 = 001 = 1

QE = QF × Q = 1 × Q = Q = 010 = 2

Q8 = QE × Q = Q × Q = Q8 = 100 = 4

Q? = Q8 + 1 = Q8 + 1 = Q8 + 1 = 101 = 5

Q> = Q? × Q = (Q8 + 1) × Q = Q? + Q
= Q8 + Q + 1

= 111 = 7

QD = Q> × Q = (Q8 + Q + 1) × Q = Q? + Q8 + Q
= Q8 + 1 + Q8 + Q
= Q + 1

= 011 = 3

QC = QD × Q = (Q + 1) × Q = Q8 + Q = 110 = 6

QB = QC × Q = (Q8 + Q) × Q = Q? + Q8 = Q8 + 1 + Q8 = 1 = 001 = 1

Linear Codes

• We see from the power QB = 1 that we have the 
cyclic group 34∗(2?) working mod 7? + 78 + 1

• Theorem [TW]: If 3 = [£¤ , b] is the generating 
matrix for a code ¥, then ¦ = [−b� , £.a¤] is the 
parity check matrix for ¥.

• Constructing the parity check matrix [RT1]:
Compile the remainders in the table into the 
matrix

QC QD Q> Q? Q8 QE QF =

¦ =
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

�

Parity Check Matrix

• Using the theorem [TW] stated previously, the 
generating matrix is:

3 =
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

• Example Suppose we begin with a plaintext 
word, - = 1010, We will encode it with G, alter 
one bit, then use the parity check matrix H to 
identify the error.

Generating Matrix

Example (cont)	
Step 1. Compute code word  j = -3

j = -3 = 1 0 1 0

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

	= 1 0 1 0 0 0 1
• Observe: codeword contains the plaintext word 
followed by three check bits 001.  

• Now, we will alter the 4th bit 
(to simulate an error):

j� = 1 0 1 1 0 0 1

Hamming Example

Example (cont)		
j� = 1 0 1 1 0 0 1

Step 2.  Compute the check bit product j�¦

j�¦ = 1 0 1 1 0 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

�

										= 1 0 1

• Note: unaltered codewords produce j¦ = y.
• j�¦ = (1 0 1) is the 4th column of ¦.

• Hence 4th bit was changed.

Hamming Example

Example (cont)		
Step	3: Correct	bit	and	check

j = 1 0 1 0 0 0 1

j¦ = 1 0 1 0 0 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

�

								= (0 0 0)

Hamming Example
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Finite Elements and P.D.E.s

• The applications of Partial Differential 
Equations (PDEs) are 

• Many analytic techniques are available for 
solving linear PDEs in standard forms:

• Wave equation: 
−Q8§¨¨ + §�� + j§ = 4 {, © , � > 0

• Poisson/Laplace equation:
Q8§¨¨ + §�� + j§ = � {, © , Q > 0

• Heat equation:  
−�§¨¨ + §� + j§ = ℎ {, © , Q > 0

• In many applications, the equations become too 
complex for known analytical methods.

• In this case, we must use numerical methods of 
approximating solutions to PDEs.  

• Difference methods-
approximate derivatives by calculating differences 
over increasingly small intervals that converge to the 
analytical solution

• Other useful methods:
Crank-Nicolson method and Rayleigh-Ritz method 

Numerical Methods

• A given region is divided into 
a finite number of geometric 
sub-regions, called the finite 
elements.  

• Use a set of basis functions 
from a chosen function space 
to extrapolate the values of 
the solution for each finite 
element using initial values 
and boundary values

Finite Element Method

The key steps:

• Define our finite element space ª� and the nature 
and parameters of the functions v in ª�.

• Compute the local stiffness matrix and the 
coefficients of the local basis functions.

• Compute the values of the global nodes and map the 
local nodes to global nodes.

• Compute the global stiffness matrix, S, 
(coefficients of the system which we need to solve.)

• Compute the values of the vector A = A� , where 
A� = « g {, ¬ � {, ¬ �{

®

• Finally, we will solve the matrix equation ¯{ = °.

Finite Element Method

Let’s consider the Poisson problem:
−Δ§ = g			�/			Ω, 				Ω = 0,1 8

§ = 0			R/			³Ω

We will implement FEM with MATLAB 
algorithms.  

• http://knightmath.com/tamu/poisson/

FEM and Poisson’s Equation

2k Factorial Design

• Experiments are an important tool for all areas 
of science and engineering.  

• We must carefully consider the design of the 
experiment.  

• Often a result is affected by multiple factors.  

• It is useful to perform a factorial experiment, 
which is performed at all factor levels.  
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• With k factors that can be controlled, we can use 

a 2¤ factorial design.  

• Analyze the effects of the individual factors as 
well as the joint effect of the factors on the 
response.  

• Quantitative or qualitative responses studied at 
only two levels for each factor.  

• Called a 2¤ factorial design since the experiment 

requires 2¤ observations. [MR]

J´ Factorial Design

• 28 factorial design ⇒	two factors 
(A and B)

• Observe these factors at two 
levels, low(-) and high(+), 

• Requires 28 = 4 observations as 
shown in the geometric model 

• 1 , Q, A, and	QA represent the 
total of all n observations taken 
at these levels.  

• Design addresses all possible 
factors and interactions.

J´ Factorial Design

Low
 (-)

A

B

Low

 (-)
High
 (+)

High

 (+) b

(1)

a

ab

Treat

ment A B

(1) - -

a + -

b - +

ab + +

• In	a	2¤ factorial design, the combinations of the 
(+) and (-) symbols mirror the binary 

representation of the polynomials in 34(2¤).  
• Testing of each of the factors at many levels is 
often unnecessary. 

• The factorial model gives us a good picture of 
which factors are significant by testing them at 
only two levels each.

J´ Factorial Design

Example:

An article in Analytica Chimica Acta examined 
four parameters that affect the sensitivity and 
detection of the analytical instruments used to 
measure clinical samples.  They optimized the 
sensor function using EBC samples spiked with 
acetone, a known clinical biomarker in breath.  
The following table shows the results for a single 
replicate of a 2> factorial experiment for one of the 
outputs, the average amplitude of acetone peak 
over three repetitions.

Clinical Samples

Configuration A B C D Yield 

1 + + + + 0.12

2 + + + - 0.1193

3 + + - + 0.1196

4 + + - - 0.1192

5 + - + + 0.1186

6 + - + - 0.1188

7 + - - + 0.1191

8 + - - - 0.1186

9 - + + + 0.121

10 - + + - 0.1195

11 - + - + 0.1196

12 - + - - 0.1191

13 - - + + 0.1192

14 - - + - 0.1194

15 - - - + 0.1188

16 - - - - 0.1188

Clinical Samples

A:	RF	voltage	of	the	
DMS	Sensor	(1200	or	
1400V)
B:	Nitrogen	carrier	
gas	flow	rate	(250	or	
500)

C:	Solid	phase	
microextraction filter	
type	(polyacrylate or	
PDMS-DVB)

D:	GC	cooling	profile	
(cryogenic	and	
noncryogenic)

• Data: A 2> factorial experiment on clinical 
samples
Objective: Factor analysis and interaction of 
factor using an effects model
Hypotheses: We consider the null hypotheses 
below with a confidence level of 95%.

• Main Effects – ¦F: · � = 0
2-way Interaction Effects  - ¦F: ·¸ �� = 0
3-way Interaction Effects – ¦F: ·¸¹ ��¤ = 0
(We will ignore 4-way interactions since they are 
highly unlikely to be significant.)

Clinical Samples
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Clinical Samples

• Significant 
main effects: 
B, C, and D 
(p-value<.05)

• Significant 
two-way 
interactions:
A*C and B*D. 

Clinical Samples

• interaction profile plots show interactions of 
A,C and B,D.

• To analyze the fit of the effects model, we look at 
the ANOVA table and see that the p-value for the 
model fit is .0628 which is too high. 

Clinical Samples

• Since A is not a main effect, we will remove this 
factor and recalculate the model.  When we do 
this, we get a p-value of .0150.  This is an 
acceptable value for our goodness of fit.

Clinical Samples

• Many real-life applications of mathematics 
require continuousness and infinite 
considerations.

• However, considering finite sets can prove quite 
effective in understanding and controlling 
results.

• In all situations, finite sets must be designed 
with much care and forethought to produce 
useful results.

• If this is done, we can begin to understand the 
infinite from our finite perspective.

Conclusion
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